Suppr超能文献

噪声优化的基于先进图像的虚拟单能成像用于改善肺癌可视化:与传统虚拟单能成像的比较

Noise-optimized advanced image-based virtual monoenergetic imaging for improved visualization of lung cancer: Comparison with traditional virtual monoenergetic imaging.

作者信息

Frellesen Claudia, Kaup Moritz, Wichmann Julian L, Hüsers Kristina, Scholtz Jan-Erik, Albrecht Moritz H, Metzger Sarah C, Bauer Ralf W, Kerl J Matthias, Lehnert Thomas, Vogl Thomas J, Bodelle Boris

机构信息

University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.

University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.

出版信息

Eur J Radiol. 2016 Mar;85(3):665-72. doi: 10.1016/j.ejrad.2015.12.022. Epub 2015 Dec 29.

Abstract

PURPOSE

To assess the effect of a noise-optimized image-based virtual monoenergetic imaging (VMI+) algorithm in direct comparison with the traditional VMI technique and standard linearly-blended images emulating 120-kVp acquisition (M_0.3) on image quality at dual-energy CT in patients with lung cancer.

MATERIALS AND METHODS

Dual-source dual-energy CT examinations of 48 patients with biopsy-proven primary (n=31) or recurrent (n=20) lung cancer were evaluated. Images were reconstructed as M_0.3, and VMI+ and traditional VMI series at 40, 55, and 70keV. Attenuation of tumor, descending aorta, pulmonary trunk, latissimus muscle, and noise were measured. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used by three observers to subjectively evaluate general image impression, tumor delineation, image sharpness, and image noise.

RESULTS

Background noise was consistently lower with VMI+ compared to VMI at all keV levels (all p<0.0001) and M_0.3 (all p≤0.0004). Tumor SNR and CNR peaked in the 40keV VMI+ series, significantly higher compared to all VMI and M_0.3 series (all p<0.0008). Observers preferred the 55keV VMI+ series regarding general image impression and tumor delineation compared to all other series (all p<0.0001). Image sharpness and image noise ratings were highest in the 55keV VMI+ and 70keV VMI and VMI+ reconstructions.

CONCLUSIONS

Tumor CNR peaked at 40keV VMI+ while observers preferred 55keV VMI+ series overall other series for dual-energy CT of lung cancer. The noise-optimized VMI+ technique showed significantly lower background noise and higher SNR and CNR compared to the traditional VMI technique at matching keV levels.

摘要

目的

在肺癌患者的双能CT中,直接比较噪声优化的基于图像的虚拟单能量成像(VMI+)算法与传统VMI技术以及模拟120 kVp采集的标准线性混合图像(M_0.3)对图像质量的影响。

材料与方法

对48例经活检证实为原发性(n = 31)或复发性(n = 20)肺癌的患者进行双源双能CT检查。图像重建为M_0.3、40 keV、55 keV和70 keV的VMI+及传统VMI系列。测量肿瘤、降主动脉、肺动脉干、背阔肌的衰减及噪声。计算信噪比(SNR)和对比噪声比(CNR)。由三名观察者使用五点量表对总体图像印象、肿瘤轮廓、图像清晰度和图像噪声进行主观评估。

结果

在所有keV水平下,VMI+的背景噪声始终低于VMI(所有p < 0.0001)和M_0.3(所有p≤0.0004)。肿瘤SNR和CNR在40 keV VMI+系列中达到峰值,显著高于所有VMI和M_0.3系列(所有p < 0.0008)。与所有其他系列相比,观察者在总体图像印象和肿瘤轮廓方面更倾向于55 keV VMI+系列(所有p < 0.0001)。图像清晰度和图像噪声评分在55 keV VMI+、70 keV VMI及VMI+重建中最高。

结论

肿瘤CNR在40 keV VMI+时达到峰值,而观察者在肺癌双能CT中总体上更倾向于55 keV VMI+系列。与传统VMI技术在匹配keV水平时相比,噪声优化的VMI+技术显示出显著更低的背景噪声以及更高的SNR和CNR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验