Suppr超能文献

疾病对雌性进化的影响以及细胞质雄性不育群体中性别遗传基础的研究。

The effect of disease on the evolution of females and the genetic basis of sex in populations with cytoplasmic male sterility.

作者信息

Miller Ian, Bruns Emily

机构信息

Department of Biology, University of Virginia, Charlottesville, VA 22904, USA Biology Distinguished Majors Program, University of Virginia, Charlottesville, VA 22904, USA.

Department of Biology, University of Virginia, Charlottesville, VA 22904, USA

出版信息

Proc Biol Sci. 2016 Feb 10;283(1824). doi: 10.1098/rspb.2015.3035.

Abstract

The evolution of separate males and females is an important evolutionary transition that has occurred multiple times in flowering plants. While empirical studies have stressed the potential importance of natural enemies and organismal interactions in the evolution of separate sexes, there has been no treatment of natural enemies in the theoretical literature. We investigated the effects of disease on the evolution of females in gynodioecious populations composed of females and hermaphrodites, where sex is determined by the interaction of cytoplasmic male sterility (CMS) and nuclear restorer genes. When females are significantly more resistant than hermaphrodites, disease drives an increase in the frequency of females and sex determination becomes nuclear, creating the pre-conditions for the evolution of separate males and females. However, when females are only moderately more resistant, disease drives changes in the frequency of CMS and restorer alleles, but has little effect on the frequency of females. We discuss our results in the context of the evolution of mating systems and cyto-nuclear epistasis.

摘要

雌雄异体的进化是开花植物中多次发生的重要进化转变。虽然实证研究强调了天敌和生物相互作用在性别进化中的潜在重要性,但理论文献中尚未涉及天敌。我们研究了疾病对由雌性和雌雄同体组成的雌全异株种群中雌性进化的影响,其中性别由细胞质雄性不育(CMS)和核恢复基因的相互作用决定。当雌性比雌雄同体具有显著更高的抗性时,疾病会促使雌性频率增加,性别决定变为核遗传,为雌雄异体的进化创造了先决条件。然而,当雌性仅具有适度更高的抗性时,疾病会推动CMS和恢复等位基因频率的变化,但对雌性频率影响不大。我们在交配系统进化和核质上位性的背景下讨论了我们的结果。

相似文献

2
Gynodioecy to dioecy: are we there yet?
Ann Bot. 2012 Feb;109(3):531-43. doi: 10.1093/aob/mcr170. Epub 2011 Aug 1.
3
Evolution of dioecy: can nuclear-cytoplasmic interactions select for maleness?
Heredity (Edinb). 1994 Oct;73 ( Pt 4):346-54. doi: 10.1038/hdy.1994.181.
4
Modeling gynodioecy: novel scenarios for maintaining polymorphism.
Am Nat. 2003 May;161(5):762-76. doi: 10.1086/374803. Epub 2003 May 2.
5
NUCLEO-CYTOPLASMIC MALE STERILITY AND ALTERNATIVE ROUTES TO DIOECY.
Evolution. 1994 Dec;48(6):1933-1945. doi: 10.1111/j.1558-5646.1994.tb02224.x.
8
A conflict between two sexes, females and hermaphrodites.
Experientia Suppl. 1987;55:245-61. doi: 10.1007/978-3-0348-6273-8_11.
10
The evolution of gynodioecy on a lattice.
J Theor Biol. 2010 Sep 21;266(2):219-25. doi: 10.1016/j.jtbi.2010.06.025. Epub 2010 Jun 25.

引用本文的文献

1
2
Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding.
Plant Reprod. 2019 Sep;32(3):231-256. doi: 10.1007/s00497-019-00371-y. Epub 2019 May 3.

本文引用的文献

5
Using plants to elucidate the mechanisms of cytonuclear co-evolution.
New Phytol. 2015 Feb;205(3):1040-6. doi: 10.1111/nph.12835. Epub 2014 May 6.
6
A meta-analysis of the strength and nature of cytoplasmic genetic effects.
J Evol Biol. 2014 Oct;27(10):2021-34. doi: 10.1111/jeb.12468. Epub 2014 Sep 4.
8
An angiosperm-wide analysis of the gynodioecy-dioecy pathway.
Ann Bot. 2014 Sep;114(3):539-48. doi: 10.1093/aob/mcu134. Epub 2014 Aug 4.
9
How selfing, inbreeding depression, and pollen limitation impact nuclear-cytoplasmic gynodioecy: a model.
Evolution. 2013 Sep;67(9):2674-87. doi: 10.1111/evo.12142. Epub 2013 Jun 4.
10
The evolutionary ecology of cytonuclear interactions in angiosperms.
Trends Plant Sci. 2012 Nov;17(11):638-43. doi: 10.1016/j.tplants.2012.06.006. Epub 2012 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验