Chimienti Marianna, Cornulier Thomas, Owen Ellie, Bolton Mark, Davies Ian M, Travis Justin M J, Scott Beth E
School of Biological Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK; Marine Scotland Science Scottish Government Marine Laboratory PO Box 101375 Victoria Road Aberdeen AB11 9DB UK.
School of Biological Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK.
Ecol Evol. 2016 Jan 11;6(3):727-41. doi: 10.1002/ece3.1914. eCollection 2016 Feb.
The recent increase in data accuracy from high resolution accelerometers offers substantial potential for improved understanding and prediction of animal movements. However, current approaches used for analysing these multivariable datasets typically require existing knowledge of the behaviors of the animals to inform the behavioral classification process. These methods are thus not well-suited for the many cases where limited knowledge of the different behaviors performed exist. Here, we introduce the use of an unsupervised learning algorithm. To illustrate the method's capability we analyse data collected using a combination of GPS and Accelerometers on two seabird species: razorbills (Alca torda) and common guillemots (Uria aalge). We applied the unsupervised learning algorithm Expectation Maximization to characterize latent behavioral states both above and below water at both individual and group level. The application of this flexible approach yielded significant new insights into the foraging strategies of the two study species, both above and below the surface of the water. In addition to general behavioral modes such as flying, floating, as well as descending and ascending phases within the water column, this approach allowed an exploration of previously unstudied and important behaviors such as searching and prey chasing/capture events. We propose that this unsupervised learning approach provides an ideal tool for the systematic analysis of such complex multivariable movement data that are increasingly being obtained with accelerometer tags across species. In particular, we recommend its application in cases where we have limited current knowledge of the behaviors performed and existing supervised learning approaches may have limited utility.
高分辨率加速度计近期在数据准确性方面的提升,为更好地理解和预测动物运动提供了巨大潜力。然而,目前用于分析这些多变量数据集的方法通常需要对动物行为有现有了解,以便为行为分类过程提供信息。因此,这些方法不太适用于许多对所执行的不同行为了解有限的情况。在这里,我们介绍一种无监督学习算法的应用。为了说明该方法的能力,我们分析了使用GPS和加速度计组合收集的两种海鸟的数据:刀嘴海雀(Alca torda)和普通海鸠(Uria aalge)。我们应用无监督学习算法期望最大化来在个体和群体层面表征水上和水下的潜在行为状态。这种灵活方法的应用为这两种研究物种在水面上下的觅食策略带来了重要的新见解。除了飞行、漂浮等一般行为模式以及水柱内的下降和上升阶段外,这种方法还能探索诸如搜索和捕食/捕获猎物等以前未研究过的重要行为。我们认为,这种无监督学习方法为系统分析此类复杂的多变量运动数据提供了理想工具,这些数据越来越多地通过加速度计标签在不同物种中获得。特别是,我们建议在我们目前对所执行行为了解有限且现有监督学习方法可能效用有限的情况下应用该方法。