School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom.
J Am Chem Soc. 2016 Mar 9;138(9):3038-45. doi: 10.1021/jacs.5b10928. Epub 2016 Feb 25.
Bioorthogonal chemistry enables a specific moiety in a complex biomolecule to be selectively modified in the presence of many reactive functional groups and other cellular entities. Such selectivity has become indispensable in biology, enabling biomolecules to be derivatized, conjugated, labeled, or immobilized for imaging, biochemical assays, or therapeutic applications. Methyltransferase enzymes (MTase) that accept analogues of the cofactor S-adenosyl methionine have been widely deployed for alkyl-diversification and bioorthogonal labeling. However, MTases typically possess tight substrate specificity. Here we introduce a more flexible methodology for selective derivatization of phenolic moieties in complex biomolecules. Our approach relies on the tandem enzymatic reaction of a fungal tyrosinase and the mammalian catechol-O-methyltransferase (COMT), which can effect the sequential hydroxylation of the phenolic group to give an intermediate catechol moiety that is subsequently O-alkylated. When used in this combination, the alkoxylation is highly selective for tyrosine residues in peptides and proteins, yet remarkably tolerant to changes in the peptide sequence. Tyrosinase-COMT are shown to provide highly versatile and regioselective modification of a diverse range of substrates including peptide antitumor agents, hormones, cyclic peptide antibiotics, and model proteins.
生物正交化学使得在存在许多反应性功能基团和其他细胞实体的情况下,可以选择性地修饰复杂生物分子中的特定部分。这种选择性在生物学中变得不可或缺,使得生物分子可以被衍生化、共轭、标记或固定化,用于成像、生化测定或治疗应用。接受辅因子 S-腺苷甲硫氨酸类似物的甲基转移酶(MTase)已被广泛用于烷基多样化和生物正交标记。然而,MTases 通常具有严格的底物特异性。在这里,我们引入了一种更灵活的方法,用于选择性修饰复杂生物分子中的酚部分。我们的方法依赖于真菌酪氨酸酶和哺乳动物儿茶酚-O-甲基转移酶(COMT)的串联酶反应,该反应可以使酚基团顺序羟化,生成中间的儿茶酚部分,随后进行 O-烷基化。当以这种组合使用时,烷氧基化对肽和蛋白质中的酪氨酸残基具有高度选择性,但对肽序列的变化具有惊人的耐受性。酪氨酸酶-COMT 被证明可以高度灵活和区域选择性地修饰包括肽抗肿瘤剂、激素、环状肽抗生素和模型蛋白在内的多种底物。