Suppr超能文献

帕金森病6-OHDA损伤大鼠模型中皮质-基底神经节-丘脑网络的生物物理模型

A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

作者信息

Kumaravelu Karthik, Brocker David T, Grill Warren M

机构信息

Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA.

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.

出版信息

J Comput Neurosci. 2016 Apr;40(2):207-29. doi: 10.1007/s10827-016-0593-9. Epub 2016 Feb 11.

Abstract

Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

摘要

对大脑皮层下区域(基底神经节)进行电刺激,即深部脑刺激(DBS),是治疗帕金森病(PD)的一种有效方法。在丘脑底核(STN)或苍白球内侧部(GPi)进行慢性高频(HF)DBS可减轻PD患者的运动症状,包括运动迟缓及震颤,但DBS的治疗机制尚未完全明确。我们构建了一个生物物理网络模型,该模型由代表健康大鼠和帕金森病大鼠大脑的闭环皮质-基底神经节-丘脑回路组成。通过将皮质(CTX)刺激在基底神经节(BG)核中诱发的反应与已发表的实验结果进行比较,验证了该模型的网络特性。该模型的一个关键涌现特性是产生低频网络振荡。与它们假定的病理作用一致,与健康状态相比,帕金森病状态下模型BG神经元的低频振荡更为明显。我们使用该模型量化了不同频率的STN DBS在抑制GPi低频振荡活动方面的有效性。频率低于40 Hz无效,50 Hz至130 Hz之间的频率,低频振荡功率逐渐降低,高于150 Hz时达到饱和。高频STN DBS通过兴奋和抑制GPe/GPi神经元的放电来抑制GPe/GPi中的病理振荡,高频刺激比低频刺激影响的GPe/GPi神经元数量更多。与病理振荡的频率依赖性抑制类似,STN DBS还以频率依赖性方式使CTX刺激诱发的异常GPi放电活动正常化,高频最为有效。因此,治疗性高频STN DBS通过影响BG输出核中更大比例神经元的活动,有效抑制了病理活动。

相似文献

1
A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.
J Comput Neurosci. 2016 Apr;40(2):207-29. doi: 10.1007/s10827-016-0593-9. Epub 2016 Feb 11.
2
Model-based deconstruction of cortical evoked potentials generated by subthalamic nucleus deep brain stimulation.
J Neurophysiol. 2018 Aug 1;120(2):662-680. doi: 10.1152/jn.00862.2017. Epub 2018 Apr 25.
3
The effects of DBS patterns on basal ganglia activity and thalamic relay : a computational study.
J Comput Neurosci. 2012 Aug;33(1):151-67. doi: 10.1007/s10827-011-0379-z. Epub 2012 Jan 13.

引用本文的文献

2
A Hybrid ODE-NN Framework for Modeling Incomplete Physiological Systems.
IEEE Trans Biomed Eng. 2025 Apr;72(4):1377-1386. doi: 10.1109/TBME.2024.3505796. Epub 2025 Mar 21.
3
Break-up and recovery of harmony between direct and indirect pathways in the basal ganglia: Huntington's disease and treatment.
Cogn Neurodyn. 2024 Oct;18(5):2909-2924. doi: 10.1007/s11571-024-10125-w. Epub 2024 May 30.
4
Quantifying harmony between direct and indirect pathways in the basal ganglia: healthy and Parkinsonian states.
Cogn Neurodyn. 2024 Oct;18(5):2809-2829. doi: 10.1007/s11571-024-10119-8. Epub 2024 May 16.
5
Refining Brain Stimulation Therapies: An Active Learning Approach to Personalization.
bioRxiv. 2024 Sep 3:2024.09.02.610880. doi: 10.1101/2024.09.02.610880.
6
Refining Brain Stimulation Therapies: An Active Learning Approach to Personalization.
Res Sq. 2024 Sep 4:rs.3.rs-4876094. doi: 10.21203/rs.3.rs-4876094/v1.
7
Mathematical derivation and mechanism analysis of beta oscillations in a cortex-pallidum model.
Cogn Neurodyn. 2024 Jun;18(3):1359-1378. doi: 10.1007/s11571-023-09951-1. Epub 2023 Mar 23.
8
Monitoring time domain characteristics of Parkinson's disease using 3D memristive neuromorphic system.
Front Comput Neurosci. 2023 Dec 15;17:1274575. doi: 10.3389/fncom.2023.1274575. eCollection 2023.
9
Closed-loop modulation of model parkinsonian beta oscillations based on CAR-fuzzy control algorithm.
Cogn Neurodyn. 2023 Oct;17(5):1185-1199. doi: 10.1007/s11571-022-09820-3. Epub 2022 Jun 18.
10
Synaptic network structure shapes cortically evoked spatio-temporal responses of STN and GPe neurons in a computational model.
Front Neuroinform. 2023 Aug 22;17:1217786. doi: 10.3389/fninf.2023.1217786. eCollection 2023.

本文引用的文献

1
Parkinson's disease: animal models and dopaminergic cell vulnerability.
Front Neuroanat. 2014 Dec 15;8:155. doi: 10.3389/fnana.2014.00155. eCollection 2014.
2
Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits.
J Clin Invest. 2014 Oct;124(10):4629-41. doi: 10.1172/JCI75587. Epub 2014 Sep 9.
3
Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats.
Korean J Physiol Pharmacol. 2013 Aug;17(4):299-306. doi: 10.4196/kjpp.2013.17.4.299. Epub 2013 Jul 30.
4
Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):244-53. doi: 10.1109/TNSRE.2013.2241791.
5
Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex.
Neuron. 2012 Dec 6;76(5):1030-41. doi: 10.1016/j.neuron.2012.09.032.
7
Improved efficacy of temporally non-regular deep brain stimulation in Parkinson's disease.
Exp Neurol. 2013 Jan;239:60-7. doi: 10.1016/j.expneurol.2012.09.008. Epub 2012 Sep 27.
8
Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor.
Mov Disord. 2012 Sep 15;27(11):1404-12. doi: 10.1002/mds.25137. Epub 2012 Aug 27.
9
Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson's disease.
J Physiol. 2012 Nov 15;590(22):5861-75. doi: 10.1113/jphysiol.2012.241331. Epub 2012 Aug 13.
10
Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.
Eur J Neurosci. 2012 Jul;36(2):2240-51. doi: 10.1111/j.1460-9568.2012.08085.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验