Suppr超能文献

利用定量肺实质特征改进肺结节分类

Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.

作者信息

Dilger Samantha K N, Uthoff Johanna, Judisch Alexandra, Hammond Emily, Mott Sarah L, Smith Brian J, Newell John D, Hoffman Eric A, Sieren Jessica C

机构信息

University of Iowa, Department of Biomedical Engineering, 3100 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States; University of Iowa, Department of Radiology, 200 Hawkins Drive, Iowa City, Iowa 52242, United States; University of Iowa, Holden Comprehensive Cancer Center, 200 Hawkins Drive, Iowa City, Iowa 52242, United States.

University of Iowa, Department of Biomedical Engineering, 3100 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242, United States; University of Iowa, Department of Radiology, 200 Hawkins Drive, Iowa City, Iowa 52242, United States.

出版信息

J Med Imaging (Bellingham). 2015 Oct;2(4):041004. doi: 10.1117/1.JMI.2.4.041004. Epub 2015 Sep 1.

Abstract

Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

摘要

当前用于确定肺结节恶性程度的计算机辅助诊断(CAD)模型,是通过计算机断层扫描(CT)数据来表征结节的形状、密度和边界的。对结节周围肺实质的分析目前还很少被探索。我们假设,通过纳入从周围肺组织量化得到的特征,可以实现更好的结节分类。为了探究这一假设,我们开发了扩展的定量CT特征提取技术,包括针对实质和结节的体积Laws纹理能量测量、使用光线投射和橡皮筋拉直的边界描述符、表征密度的直方图特征以及全肺测量。使用逐步向前选择和留一法交叉验证,采用神经网络进行分类。当将这些技术应用于高分辨率CT扫描的50个结节(22个恶性和28个良性)时,有52个特征(8个结节特征、39个实质特征和5个全肺特征)具有统计学意义。仅结节特征在ROC曲线下的面积为0.918(包括结节大小)和0.872(不包括结节大小)。通过纳入实质特征(0.938)和全肺特征(0.932),性能得到了提升。这些结果表明,纳入实质特征时性能有提高的趋势,同时大量具有统计学意义的实质特征也支持了我们的假设:恶性结节和良性结节对肺实质的影响存在差异,这有助于基于CAD的结节特征描述。

相似文献

1
Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.
J Med Imaging (Bellingham). 2015 Oct;2(4):041004. doi: 10.1117/1.JMI.2.4.041004. Epub 2015 Sep 1.
4
Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
Comput Biol Med. 2012 Nov;42(11):1098-109. doi: 10.1016/j.compbiomed.2012.09.002. Epub 2012 Sep 26.
7
Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers.
PLoS One. 2017 Nov 9;12(11):e0185032. doi: 10.1371/journal.pone.0185032. eCollection 2017.
10
Feature fusion for lung nodule classification.
Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1809-1818. doi: 10.1007/s11548-017-1626-1. Epub 2017 Jun 16.

引用本文的文献

1
Peri- and intra-nodular radiomic features based on F-FDG PET/CT to distinguish lung adenocarcinomas from pulmonary granulomas.
Front Med (Lausanne). 2024 Aug 7;11:1453421. doi: 10.3389/fmed.2024.1453421. eCollection 2024.
3
Radiomic biomarkers from chest computed tomography are assistive in immunotherapy response prediction for non-small cell lung cancer.
Transl Lung Cancer Res. 2023 May 31;12(5):1023-1033. doi: 10.21037/tlcr-22-763. Epub 2023 May 11.
4
The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis.
PLoS One. 2023 Mar 23;18(3):e0273445. doi: 10.1371/journal.pone.0273445. eCollection 2023.
5
Imaging genomics: data fusion in uncovering disease heritability.
Trends Mol Med. 2023 Feb;29(2):141-151. doi: 10.1016/j.molmed.2022.11.002. Epub 2022 Dec 2.
6
A Novel Deep Learning Model to Distinguish Malignant Versus Benign Solid Lung Nodules.
Med Sci Monit. 2022 Jul 29;28:e936830. doi: 10.12659/MSM.936830.
7
Computed Tomography Features of Lung Structure Have Utility for Differentiating Malignant and Benign Pulmonary Nodules.
Chronic Obstr Pulm Dis. 2022 Apr 29;9(2):154-164. doi: 10.15326/jcopdf.2021.0271.
8
The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up.
Front Oncol. 2021 May 5;11:603595. doi: 10.3389/fonc.2021.603595. eCollection 2021.
9
The Effects of Perinodular Features on Solid Lung Nodule Classification.
J Digit Imaging. 2021 Aug;34(4):798-810. doi: 10.1007/s10278-021-00453-2. Epub 2021 Mar 31.

本文引用的文献

1
Reproducibility and Prognosis of Quantitative Features Extracted from CT Images.
Transl Oncol. 2014 Feb 1;7(1):72-87. doi: 10.1593/tlo.13844. eCollection 2014 Feb.
2
Development of quantitative computed tomography lung protocols.
J Thorac Imaging. 2013 Sep;28(5):266-71. doi: 10.1097/RTI.0b013e31829f6796.
3
A mathematical model for predicting malignancy of solitary pulmonary nodules.
World J Surg. 2012 Apr;36(4):830-5. doi: 10.1007/s00268-012-1449-8.
4
Reduced lung-cancer mortality with low-dose computed tomographic screening.
N Engl J Med. 2011 Aug 4;365(5):395-409. doi: 10.1056/NEJMoa1102873. Epub 2011 Jun 29.
5
Pulmonary nodule detection, characterization, and management with multidetector computed tomography.
J Thorac Imaging. 2011 May;26(2):90-105. doi: 10.1097/RTI.0b013e31821639a9.
6
The National Lung Screening Trial: overview and study design.
Radiology. 2011 Jan;258(1):243-53. doi: 10.1148/radiol.10091808. Epub 2010 Nov 2.
7
Genetic epidemiology of COPD (COPDGene) study design.
COPD. 2010 Feb;7(1):32-43. doi: 10.3109/15412550903499522.
9
New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
Eur J Cancer. 2009 Jan;45(2):228-47. doi: 10.1016/j.ejca.2008.10.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验