Liu Li-Hong, Michalak David J, Chopra Tatiana P, Pujari Sidharam P, Cabrera Wilfredo, Dick Don, Veyan Jean-François, Hourani Rami, Halls Mathew D, Zuilhof Han, Chabal Yves J
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.
J Phys Condens Matter. 2016 Mar 9;28(9):094014. doi: 10.1088/0953-8984/28/9/094014. Epub 2016 Feb 12.
The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface).
在清洗后对氮化硅(Si3N4)或二氧化硅(SiO2)表面进行选择性化学功能化的能力将开启有趣的技术应用。为了实现这一目标,需要仔细表征表面的化学成分,以便目标化学反应能够一次仅在一个表面上进行。虽然已表明湿化学清洗后的二氧化硅表面以表面Si-OH位点终止,但氢氟酸蚀刻的氮化硅表面的化学成分更具争议性。在这项工作中,我们在各种氢氟酸蚀刻水溶液条件下去除了原生氧化物,并使用红外吸收光谱(IRAS)、X射线光电子能谱(XPS)、低能离子散射(LEIS)和接触角测量研究了所得Si3N4表面的化学性质。我们发现,氢氟酸蚀刻的氮化硅表面由表面Si-F和Si-OH键终止,还有少量次表面Si-OH、Si-O-Si和Si-NH2基团。表面Si-F位点的浓度不依赖于氢氟酸浓度,但氧和Si-NH2的分布显示出微弱的依赖性。蚀刻后的氮化物表面的Si-OH基团显示出与SiO2上的Si-OH位点类似的反应方式,因此未发现选择性。然而,通过首先使蚀刻后的氮化物表面上的-NH2基团与醛分子反应(醛分子不与SiO2表面上的Si-OH位点反应),然后使用三氯有机硅烷仅在SiO2表面上进行选择性反应(在醛封端的Si3N4表面上无反应性),证明了化学选择性。