Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli 140306, India.
School of Basic Sciences, Indian Institute of Technology Bhubabneswar, Satyanagar, Bhubaneswar 751007, India.
Phys Rev E. 2016 Jan;93(1):012117. doi: 10.1103/PhysRevE.93.012117. Epub 2016 Jan 11.
In systems exhibiting fluctuation-dominated phase ordering, a single order parameter does not suffice to characterize the order, and it is necessary to monitor a larger set. For hard-core sliding particles on a fluctuating surface and the related coarse-grained depth (CD) models, this set comprises the long-wavelength Fourier components of the density profile, which capture the breakup and remerging of particle-rich regions. We study both static and dynamic scaling laws obeyed by the Fourier modes Q_{mL} and find that the mean value obeys the static scaling law 〈Q_{mL}〉∼L^{-ϕ}f(m/L) with ϕ≃2/3 and ϕ≃3/5 for Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ) surface evolution, respectively, and ϕ≃3/4 for the CD model. The full probability distribution P(Q_{mL}) exhibits scaling as well. Further, time-dependent correlation functions such as the steady-state autocorrelation and cross-correlations of order-parameter components are scaling functions of t/L^{z}, where L is the system size and z is the dynamic exponent, with z=2 for EW and z=3/2 for KPZ surface evolution. In addition we find that the CD model shows temporal intermittency, manifested in the dynamical structure functions of the density and the weak divergence of the flatness as the scaled time approaches 0.
在表现出涨落主导的相序的系统中,单个序参量不足以描述秩序,有必要监测更大的集合。对于在波动表面上的硬芯滑动粒子和相关的粗粒深度 (CD) 模型,这个集合包括密度分布的长波长傅里叶分量,它们捕捉了粒子丰富区域的分裂和再合并。我们研究了傅里叶模式 Q_{mL} 遵守的静态和动态标度律,并发现平均值遵守静态标度律 〈Q_{mL}〉∼L^{-ϕ}f(m/L),其中 ϕ≃2/3 和 ϕ≃3/5 分别对应于爱德华兹-威尔金森 (EW) 和卡达尔-帕里西-张 (KPZ) 表面演化,以及 ϕ≃3/4 对应于 CD 模型。完整的概率分布 P(Q_{mL}) 也表现出标度。此外,像序参量分量的稳态自相关和交叉相关这样的时间相关函数是 t/L^{z} 的标度函数,其中 L 是系统大小,z 是动态指数,EW 为 z=2,KPZ 表面演化为 z=3/2。此外,我们发现 CD 模型表现出时间上的间歇性,表现在密度的动力结构函数和随着标度时间接近 0 时的平坦度的弱发散。