Das D, Barma M, Majumdar S N
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 2):046126. doi: 10.1103/PhysRevE.64.046126. Epub 2001 Sep 25.
We study an unconventional phase ordering phenomenon in coarse-grained depth models of the hill-valley profile of fluctuating surfaces with zero overall tilt, and for hard-core particles sliding on such surfaces under gravity. We find that several such systems approach an ordered state with large scale fluctuations which make them qualitatively different from conventional phase ordered states. We consider surfaces in the Edwards-Wilkinson (EW), Kardar-Parisi-Zhang (KPZ) and noisy surface-diffusion (NSD) universality classes. For EW and KPZ surfaces, coarse-grained depth models of the surface profile exhibit coarsening to an ordered steady state in which the order parameter has a broad distribution even in the thermodynamic limit, the distribution of particle cluster sizes decays as a power-law (with an exponent straight theta), and the scaled two-point spatial correlation function has a cusp (with an exponent alpha=1/2) at small values of the argument. The latter feature indicates a deviation from the Porod law which holds customarily, in coarsening with scalar order parameters. We present several numerical and exact analytical results for the coarsening process and the steady state. For linear surface models with a dynamical exponent z, we show that alpha=(z-1)/2 for z<3 and alpha=1 for z>3, and there are logarithmic corrections for z=3, implying alpha=1/2 for the EW surface and 1 for the NSD surface. Within the independent interval approximation we show that alpha+straight theta=2. We also study the dynamics of hard-core particles sliding locally downward on these fluctuating one-dimensional surfaces, and find that the surface fluctuations lead to large-scale clustering of the particles. We find a surface-fluctuation driven coarsening of initially randomly arranged particles; the coarsening length scale grows as approximately t(1/z). The scaled density-density correlation function of the sliding particles shows a cusp with exponents alpha approximately 0.5 and 0.25 for the EW and KPZ surfaces. The particles on the NSD surface show conventional coarsening (Porod) behavior with alpha approximately 1.
我们研究了具有零整体倾斜的波动表面的山谷轮廓粗粒化深度模型中的一种非常规相序现象,以及硬核粒子在重力作用下在这类表面上滑动的情况。我们发现,几个这样的系统会趋近于一种具有大规模涨落的有序状态,这使得它们在性质上不同于传统的相序状态。我们考虑处于爱德华兹 - 威尔金森(EW)、卡达尔 - 帕里西 - 张(KPZ)和噪声表面扩散(NSD)普适类的表面。对于EW和KPZ表面,表面轮廓的粗粒化深度模型会粗化到一个有序稳态,其中序参量即使在热力学极限下也具有宽分布,粒子团簇大小的分布按幂律衰减(指数为直θ),并且在自变量较小时,标度化的两点空间关联函数有一个尖点(指数α = 1/2)。后一个特征表明与通常在具有标量序参量的粗化过程中成立的波罗德定律存在偏差。我们给出了关于粗化过程和稳态的几个数值和精确解析结果。对于具有动力学指数z的线性表面模型,我们表明当z < 3时α = (z - 1)/2,当z > 3时α = 1,并且对于z = 3存在对数修正,这意味着EW表面的α = 1/2,NSD表面的α = 1。在独立区间近似内,我们表明α + 直θ = 2。我们还研究了硬核粒子在这些波动的一维表面上局部向下滑动的动力学,发现表面涨落会导致粒子的大规模聚集。我们发现表面涨落驱动了初始随机排列粒子的粗化;粗化长度尺度近似以t(1/z)的形式增长。滑动粒子的标度化密度 - 密度关联函数对于EW和KPZ表面分别显示出指数α约为0.5和0.25的尖点。NSD表面上的粒子显示出具有α约为1的传统粗化(波罗德)行为。