Suppr超能文献

α-变形菌纲和γ-变形菌纲的甲烷氧化菌在酸性北方泥炭沼泽中共同主导着活跃的甲烷氧化群落。

Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog.

作者信息

Esson Kaitlin C, Lin Xueju, Kumaresan Deepak, Chanton Jeffrey P, Murrell J Colin, Kostka Joel E

机构信息

School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA.

School of Earth and Environment, University of Western Australia, Crawley, WA, Australia.

出版信息

Appl Environ Microbiol. 2016 Apr 4;82(8):2363-2371. doi: 10.1128/AEM.03640-15. Print 2016 Apr.

Abstract

The objective of this study was to characterize metabolically active, aerobic methanotrophs in an ombrotrophic peatland in the Marcell Experimental Forest, in Minnesota. Methanotrophs were investigated in the field and in laboratory incubations using DNA-stable isotope probing (SIP), expression studies on particulate methane monooxygenase (pmoA) genes, and amplicon sequencing of 16S rRNA genes. Potential rates of oxidation ranged from 14 to 17 μmol of CH4g dry weight soil(-1)day(-1) Within DNA-SIP incubations, the relative abundance of methanotrophs increased from 4% in situ to 25 to 36% after 8 to 14 days. Phylogenetic analysis of the(13)C-enriched DNA fractions revealed that the active methanotrophs were dominated by the genera Methylocystis(type II;Alphaproteobacteria),Methylomonas, and Methylovulum(both, type I;Gammaproteobacteria). In field samples, a transcript-to-gene ratio of 1 to 2 was observed for pmoA in surface peat layers, which attenuated rapidly with depth, indicating that the highest methane consumption was associated with a depth of 0 to 10 cm. Metagenomes and sequencing of cDNA pmoA amplicons from field samples confirmed that the dominant active methanotrophs were Methylocystis and Methylomonas Although type II methanotrophs have long been shown to mediate methane consumption in peatlands, our results indicate that members of the genera Methylomonas and Methylovulum(type I) can significantly contribute to aerobic methane oxidation in these ecosystems.

摘要

本研究的目的是对明尼苏达州马塞尔实验森林中一个雨养泥炭地的代谢活跃的好氧甲烷氧化菌进行特征描述。利用DNA稳定同位素探测(SIP)、颗粒甲烷单加氧酶(pmoA)基因的表达研究以及16S rRNA基因的扩增子测序,在野外和实验室培养中对甲烷氧化菌进行了研究。氧化的潜在速率范围为14至17 μmol CH4 g干重土壤(-1)天(-1)。在DNA-SIP培养中,甲烷氧化菌的相对丰度从原位的4%增加到8至14天后的25%至36%。对(13)C富集的DNA组分进行系统发育分析表明,活跃的甲烷氧化菌主要由甲基孢囊菌属(II型;α-变形菌纲)、甲基单胞菌属和甲基卵菌属(均为I型;γ-变形菌纲)主导。在野外样本中,表层泥炭层中pmoA的转录本与基因比率为1至2,随深度迅速衰减,表明最高的甲烷消耗与0至10厘米的深度相关。对野外样本的宏基因组和cDNA pmoA扩增子测序证实,占主导地位的活跃甲烷氧化菌是甲基孢囊菌属和甲基单胞菌属。虽然长期以来已证明II型甲烷氧化菌介导泥炭地中的甲烷消耗,但我们的结果表明,甲基单胞菌属和甲基卵菌属(I型)的成员可对这些生态系统中的好氧甲烷氧化做出显著贡献。

相似文献

1
Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog.
Appl Environ Microbiol. 2016 Apr 4;82(8):2363-2371. doi: 10.1128/AEM.03640-15. Print 2016 Apr.
2
Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP.
Microb Ecol. 2012 Feb;63(2):438-45. doi: 10.1007/s00248-011-9902-z. Epub 2011 Jul 5.
5
Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing.
FEMS Microbiol Lett. 2016 Aug;363(16). doi: 10.1093/femsle/fnw168. Epub 2016 Jul 1.
6
Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.
FEMS Microbiol Ecol. 2014 Oct;90(1):92-102. doi: 10.1111/1574-6941.12375. Epub 2014 Jul 22.
7
Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.
FEMS Microbiol Ecol. 2007 Oct;62(1):12-23. doi: 10.1111/j.1574-6941.2007.00368.x. Epub 2007 Aug 20.
8
Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses.
Environ Microbiol. 2008 Feb;10(2):446-59. doi: 10.1111/j.1462-2920.2007.01466.x. Epub 2007 Dec 17.
10
Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing.
Environ Microbiol. 2012 Jun;14(6):1403-19. doi: 10.1111/j.1462-2920.2012.02725.x. Epub 2012 Mar 20.

引用本文的文献

1
Metabolic interactions underpinning high methane fluxes across terrestrial freshwater wetlands.
Nat Commun. 2025 Jan 22;16(1):944. doi: 10.1038/s41467-025-56133-0.
3
Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields.
Front Microbiol. 2023 Aug 31;14:1253773. doi: 10.3389/fmicb.2023.1253773. eCollection 2023.
4
Acidophilic methanotrophs: Occurrence, diversity, and possible bioremediation applications.
Environ Microbiol Rep. 2023 Aug;15(4):265-281. doi: 10.1111/1758-2229.13156. Epub 2023 Apr 11.
5
Thermal acclimation of methanotrophs from the genus Methylobacter.
ISME J. 2023 Apr;17(4):502-513. doi: 10.1038/s41396-023-01363-7. Epub 2023 Jan 18.
6
Prospecting the significance of methane-utilizing bacteria in agriculture.
World J Microbiol Biotechnol. 2022 Aug 4;38(10):176. doi: 10.1007/s11274-022-03331-3.
9
Spatial Variation of Epiphytes in the Nan River, Thailand.
Plants (Basel). 2021 Oct 22;10(11):2266. doi: 10.3390/plants10112266.
10
Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes.
Front Microbiol. 2021 Aug 12;12:669937. doi: 10.3389/fmicb.2021.669937. eCollection 2021.

本文引用的文献

2
Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers.
Appl Environ Microbiol. 2014 Oct;80(19):5944-54. doi: 10.1128/AEM.01539-14. Epub 2014 Jul 25.
4
Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland.
Appl Environ Microbiol. 2014 Jun;80(11):3531-40. doi: 10.1128/AEM.00206-14. Epub 2014 Mar 28.
5
Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments.
Environ Microbiol. 2014 Jun;16(6):1867-78. doi: 10.1111/1462-2920.12454. Epub 2014 Apr 18.
6
UPARSE: highly accurate OTU sequences from microbial amplicon reads.
Nat Methods. 2013 Oct;10(10):996-8. doi: 10.1038/nmeth.2604. Epub 2013 Aug 18.
7
Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau.
Environ Microbiol Rep. 2013 Aug;5(4):566-74. doi: 10.1111/1758-2229.12046. Epub 2013 Mar 28.
8
Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog.
Environ Microbiol Rep. 2011 Dec;3(6):667-73. doi: 10.1111/j.1758-2229.2011.00260.x. Epub 2011 May 9.
9
Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies.
Environ Microbiol Rep. 2013 Jun;5(3):335-45. doi: 10.1111/j.1758-2229.2012.00370.x. Epub 2012 Aug 13.
10
Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions.
Environ Microbiol. 2013 Sep;15(9):2395-417. doi: 10.1111/1462-2920.12149. Epub 2013 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验