Suppr超能文献

用于阐明C反应蛋白多价结合动力学的工程化两性离子磷酰胆碱单分子层

Engineered zwitterionic phosphorylcholine monolayers for elucidating multivalent binding kinetics of C-reactive protein.

作者信息

Goda Tatsuro, Miyahara Yuji

机构信息

Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.

Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.

出版信息

Acta Biomater. 2016 Aug;40:46-53. doi: 10.1016/j.actbio.2016.02.008. Epub 2016 Feb 9.

Abstract

UNLABELLED

Understanding of the activation dynamics of C-reactive protein (CRP) on plasma membranes is important in the development of zwitterionic biomaterials for their uses in the tissues of inflammation and infection. Previously, the use of a zwitterionic phosphorylcholine group, a biomimetic ligand for CRP in the presence of calcium ions, for binding experiments has revealed that the adsorption dynamics changed by ionic microenvironments. Here we focused on the effect of the ligand density on a surface, a major physicochemical parameter, on the multivalent binding modes. A building block from synthetic origin, a phospholipid analogue with thiol ends, was developed for making a cell membrane-mimicked self-assembled monolayers with tunable lateral ligand density on the molecular basis. The multivalent binding kinetics of CRP, a pentraxin in the original conformation, onto the engineered surface was measured using a surface plasmon resonance technique. The binding experiments revealed that the on-rate and off-rate constants in the first ligand-occupation reaction increased with increasing the ligand density, which resulted in stable values of the dissociation constant. Notably, the binding affinity in the second ligand-occupation reaction showed the optimal value as a function of the ligand density. Moreover, the binding experiments using a monomeric CRP-specific DNA aptamer revealed that pentameric CRP underwent structural transition into the monomers following the adsorption onto the surfaces via multivalent contacts in a pH-dependent manner. The bioengineering-based approach reveals for the first time how the multiple binding reaction is altered by the ligand arrangement at the molecular resolution and how CRP is activated by the conformational transition induced by the multiplex bindings.

STATEMENT OF SIGNIFICANCE

C-reactive protein (CRP), a major acute-phase pentraxin, binds to plasma membranes through the multivalent contacts with zwitterionic phosphorylcholine groups. However, details in the molecular dynamics is unknown due to a lack of proper sensing platform. The paper describe the synthesis of thiol-functionalized phosphorylcholine for the development of a robust cell membrane-mimetic surface on a surface plasmon resonance sensor at desired lateral ligand densities. The engineered approach on molecular basis enables a rigorous arrangement of the ligand on the surface, whose tunability and robustness are not achieved using conventional supported lipid layers. The effect of the ligand density on the multivalent binding kinetics provides the understanding of how the multivalent contacts induce conformational transitions of CRP and responses to inflammation.

摘要

未标记

了解C反应蛋白(CRP)在质膜上的激活动力学对于开发两性离子生物材料用于炎症和感染组织至关重要。此前,在钙离子存在下,使用两性离子磷酸胆碱基团(一种CRP的仿生配体)进行结合实验表明,吸附动力学受离子微环境影响而改变。在此,我们关注表面配体密度这一主要物理化学参数对多价结合模式的影响。开发了一种合成来源的构建模块,一种带有硫醇末端的磷脂类似物,用于在分子基础上制备具有可调横向配体密度的细胞膜模拟自组装单层膜。使用表面等离子体共振技术测量了原始构象的五聚体蛋白CRP在工程表面上的多价结合动力学。结合实验表明,在第一个配体占据反应中,结合速率常数和解离速率常数随配体密度增加而增加,这导致解离常数稳定。值得注意的是,在第二个配体占据反应中,结合亲和力显示出作为配体密度函数的最佳值。此外,使用单体CRP特异性DNA适配体的结合实验表明,五聚体CRP在通过多价接触吸附到表面后,会以pH依赖的方式发生结构转变为单体。基于生物工程的方法首次揭示了在分子分辨率下多重结合反应如何因配体排列而改变,以及CRP如何通过多重结合诱导的构象转变而被激活。

重要性声明

C反应蛋白(CRP)是一种主要的急性期五聚体蛋白,通过与两性离子磷酸胆碱基团的多价接触与质膜结合。然而,由于缺乏合适的传感平台,分子动力学细节尚不清楚。本文描述了硫醇功能化磷酸胆碱的合成,用于在表面等离子体共振传感器上以所需的横向配体密度开发坚固的细胞膜模拟表面。基于分子的工程方法能够在表面严格排列配体,其可调性和坚固性是使用传统支持脂质层无法实现的。配体密度对多价结合动力学的影响有助于理解多价接触如何诱导CRP的构象转变以及对炎症的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验