Chattopadhyay Soma, Kelly S D, Shibata Tomohiro, Balasubramanian M, Srinivasan S G, Du Jincheng, Banerjee Rajarshi, Ayyub Pushan
CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
EXAFS Analysis, Bolingbrook, Illinois 60440, USA.
J Chem Phys. 2016 Feb 14;144(6):064503. doi: 10.1063/1.4941334.
We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu55Nb45. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈ 3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.
我们报告了一项对具有标称化学计量比Cu55Nb45的双相纳米玻璃模型的局部组成和结构的详细研究。三维原子探针数据表明,该纳米玻璃具有纳米级相分离的玻璃结构,其中富含铜和富含铌的区域定义明确,特征长度尺度约为3纳米。然而,扩展X射线吸收精细结构分析表明,铜和铌的局部环境存在细微差异。虽然铜原子表现出强烈的聚集倾向,并且在第一配位层之外的结构有序性可忽略不计,但铌原子与不同原子的邻位比例更大(化学有序性更高),并且结构环境的有序性明显更好(拓扑有序性更高)。这首次提供了实验证据,表明金属玻璃的形成可能是由于化学有序和聚集之间的竞争导致的受挫效应。这些观察结果得到了经典以及从头算分子动力学模拟的补充。我们的研究表明,这些纳米级相分离玻璃在以下三个方面与单相纳米玻璃(由格莱特等人研究)有很大不同:(i)它们包含至少两个结构和组成不同的纳米分散玻璃相,(ii)这些相由相对清晰的相间边界分隔,(iii)热诱导结晶通过复杂的多步机制发生。因此,这类材料似乎构成了一类新的无序系统,可称为复合纳米玻璃。