Katnagallu Shyam, Wu Ge, Singh Shiv Prakash, Nandam Sree Harsha, Xia Wenzhen, Stephenson Leigh T, Gleiter Herbert, Schwaiger Ruth, Hahn Horst, Herbig Michael, Raabe Dierk, Gault Baptiste, Balachandran Shanoob
Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, 40237, Germany.
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany.
Small. 2020 Oct;16(39):e2004400. doi: 10.1002/smll.202004400. Epub 2020 Sep 3.
The properties of a material can be engineered by manipulating its atomic and chemical architecture. Nanoglasses which have been recently invented and comprise nanosized glassy particles separated by amorphous interfaces, have shown promising properties. A potential way to exploit the structural benefits of nanoglasses and of nanocrystalline materials is to optimize the composition to obtain crystals forming within the glassy particles. Here, a metastable Fe-10 at% Sc nanoglass is synthesized. A complex hierarchical microstructure is evidenced experimentally at the atomic scale. This bulk material comprises grains of a Fe Sc amorphous matrix separated by an amorphous interfacial network enriched and likely stabilized by hydrogen, and property-enhancing pure-Fe nanocrystals self-assembled within the matrix. This composite structure leads a yield strength above 2.5 GPa with an exceptional quasi-homogeneous plastic flow of more than 60% in compression. This work opens new pathways to design materials with even superior properties.
通过操纵材料的原子和化学结构,可以对其性能进行设计。最近发明的纳米玻璃由被非晶态界面隔开的纳米级玻璃颗粒组成,已展现出令人期待的性能。利用纳米玻璃和纳米晶体材料结构优势的一种潜在方法是优化成分,以获得在玻璃颗粒内形成的晶体。在此,合成了一种亚稳态的Fe-10原子百分比Sc纳米玻璃。在原子尺度上通过实验证明了其具有复杂的分级微观结构。这种块状材料包括由富含氢且可能因氢而稳定的非晶态界面网络隔开的Fe-Sc非晶态基体晶粒,以及在基体内自组装的增强性能的纯铁纳米晶体。这种复合结构使得屈服强度高于2.5吉帕,在压缩时具有超过60%的异常准均匀塑性流动。这项工作为设计具有更优异性能的材料开辟了新途径。