Suppr超能文献

ST段异常与非ST段抬高型急性冠状动脉综合征的长期预后相关:ERICO-ECG研究。

ST-segment abnormalities are associated with long-term prognosis in non-ST-segment elevation acute coronary syndromes: The ERICO-ECG study.

作者信息

Brandão Rodrigo M, Samesima Nelson, Pastore Carlos A, Staniak Henrique L, Lotufo Paulo A, Bensenor Isabela M, Goulart Alessandra C, Santos Itamar S

机构信息

Centro de Pesquisa Clínica e Epidemiológica do Hospital Universitário da Universidade de São Paulo, Brazil.

Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.

出版信息

J Electrocardiol. 2016 May-Jun;49(3):411-6. doi: 10.1016/j.jelectrocard.2016.01.005. Epub 2016 Jan 15.

Abstract

INTRODUCTION

We aimed to identify whether ST-segment abnormalities, in the admission or during in-hospital stay, are associated with survival and/or new incident myocardial infarction (MI) in 623 non-ST-elevation acute coronary syndrome participants of the Strategy of Registry of Acute Coronary Syndrome (ERICO) study.

MATERIALS AND METHODS

ERICO is conducted in a community-based hospital. ST-segment analysis was based on the Minnesota Code. We built Cox regression models to study whether ECG was an independent predictor for clinical outcomes.

RESULTS

Median follow-up was 3years. We found higher risk of death due to MI in individuals with ST-segment abnormalities in the final ECG (adjusted hazard ratio: 2.68; 95% confidence interval: 1.14-6.28). Individuals with ST-segment abnormalities in any tracing had a non-significant trend toward a higher risk of fatal or new non-fatal MI (p=0.088).

CONCLUSIONS

ST-segment abnormalities after the initial tracing added long-term prognostic information.

摘要

引言

我们旨在确定在急性冠状动脉综合征登记策略(ERICO)研究的623名非ST段抬高型急性冠状动脉综合征参与者中,入院时或住院期间的ST段异常是否与生存率和/或新发心肌梗死(MI)相关。

材料与方法

ERICO研究在一家社区医院进行。ST段分析基于明尼苏达编码。我们构建了Cox回归模型,以研究心电图是否为临床结局的独立预测因素。

结果

中位随访时间为3年。我们发现,最终心电图出现ST段异常的个体因心肌梗死死亡的风险更高(调整后的风险比:2.68;95%置信区间:1.14 - 6.28)。任何一次心电图出现ST段异常的个体发生致命性或新的非致命性心肌梗死的风险有升高趋势,但无统计学意义(p = 0.088)。

结论

首次心电图检查后的ST段异常增加了长期预后信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验