Suppr超能文献

三角形Ag@SiO2纳米颗粒的热降解机理

Thermal degradation mechanism of triangular Ag@SiO2 nanoparticles.

作者信息

Gangishetty Mahesh K, Scott Robert W J, Kelly Timothy L

机构信息

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.

出版信息

Dalton Trans. 2016 Jun 14;45(24):9827-34. doi: 10.1039/c6dt00169f.

Abstract

Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape.

摘要

三角形银纳米颗粒因其强等离子体带而成为光捕获应用的有前途的材料;这些吸收带具有高度可调性,并且可以根据颗粒大小在整个可见光范围内变化。这些材料的一个普遍问题是它们在高温下不稳定。当进行热退火时,它们会发生颗粒形态的变化,这反过来又会影响它们的光学性质。由于这个稳定性问题,这些材料不能用于需要高温的应用中。为了解决这个问题,首先了解降解机制很重要。在这里,我们测量了热退火引起的Ag@SiO2纳米三角形的颗粒形态、氧化态和配位环境的变化。紫外可见光谱和透射电子显微镜显示,在空气中对Ag@SiO2纳米三角形进行退火时,三角形核被截断并形成较小的纳米颗粒。Ag K边X射线吸收光谱(XANES和EXAFS)表明,小颗粒由Ag(0)组成,并且随着退火温度的升高,Ag-Ag配位数降低。我们推测,在空气中对Ag进行退火时,它首先被氧化为AgxO,然后随后分解回分散良好的Ag(0)纳米颗粒。相比之下,当Ag@SiO2纳米三角形在N2中退火时,由于没有氧化的可能性,不会形成小颗粒。相反,三角形核重新排列形成盘状形状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验