Suppr超能文献

一种基于分数阶导数/积分算子稳定性边界轨迹的整数阶近似方法。

An integer order approximation method based on stability boundary locus for fractional order derivative/integrator operators.

作者信息

Deniz Furkan Nur, Alagoz Baris Baykant, Tan Nusret, Atherton Derek P

机构信息

Inonu University, Department of Electrical and Electronics Engineering, Turkey.

Inonu University, Department of Electrical and Electronics Engineering, Turkey.

出版信息

ISA Trans. 2016 May;62:154-63. doi: 10.1016/j.isatra.2016.01.020. Epub 2016 Feb 11.

Abstract

This paper introduces an integer order approximation method for numerical implementation of fractional order derivative/integrator operators in control systems. The proposed method is based on fitting the stability boundary locus (SBL) of fractional order derivative/integrator operators and SBL of integer order transfer functions. SBL defines a boundary in the parametric design plane of controller, which separates stable and unstable regions of a feedback control system and SBL analysis is mainly employed to graphically indicate the choice of controller parameters which result in stable operation of the feedback systems. This study reveals that the SBL curves of fractional order operators can be matched with integer order models in a limited frequency range. SBL fitting method provides straightforward solutions to obtain an integer order model approximation of fractional order operators and systems according to matching points from SBL of fractional order systems in desired frequency ranges. Thus, the proposed method can effectively deal with stability preservation problems of approximate models. Illustrative examples are given to show performance of the proposed method and results are compared with the well-known approximation methods developed for fractional order systems. The integer-order approximate modeling of fractional order PID controllers is also illustrated for control applications.

摘要

本文介绍了一种用于控制系统中分数阶导数/积分器算子数值实现的整数阶近似方法。所提出的方法基于拟合分数阶导数/积分器算子的稳定性边界轨迹(SBL)和整数阶传递函数的SBL。SBL在控制器的参数设计平面中定义了一个边界,该边界将反馈控制系统的稳定区域和不稳定区域分开,并且SBL分析主要用于以图形方式指示导致反馈系统稳定运行的控制器参数的选择。本研究表明,分数阶算子的SBL曲线可以在有限的频率范围内与整数阶模型相匹配。SBL拟合方法根据所需频率范围内分数阶系统的SBL的匹配点,提供了获得分数阶算子和系统的整数阶模型近似的直接解决方案。因此,所提出的方法可以有效地处理近似模型的稳定性保持问题。给出了说明性示例以展示所提出方法的性能,并将结果与为分数阶系统开发的著名近似方法进行了比较。还针对控制应用说明了分数阶PID控制器的整数阶近似建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验