Suppr超能文献

一种用于估计具有连续处理的广义倾向得分的提升算法。

A Boosting Algorithm for Estimating Generalized Propensity Scores with Continuous Treatments.

作者信息

Zhu Yeying, Coffman Donna L, Ghosh Debashis

机构信息

Department of Statistics and Actuarial Science, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.

The Methodology Center, The Pennsylvania State University, University Park, PA, USA.

出版信息

J Causal Inference. 2015 Mar 1;3(1):25-40. doi: 10.1515/jci-2014-0022. Epub 2014 Aug 1.

Abstract

In this article, we study the causal inference problem with a continuous treatment variable using propensity score-based methods. For a continuous treatment, the generalized propensity score is defined as the conditional density of the treatment-level given covariates (confounders). The dose-response function is then estimated by inverse probability weighting, where the weights are calculated from the estimated propensity scores. When the dimension of the covariates is large, the traditional nonparametric density estimation suffers from the curse of dimensionality. Some researchers have suggested a two-step estimation procedure by first modeling the mean function. In this study, we suggest a boosting algorithm to estimate the mean function of the treatment given covariates. In boosting, an important tuning parameter is the number of trees to be generated, which essentially determines the trade-off between bias and variance of the causal estimator. We propose a criterion called average absolute correlation coefficient (AACC) to determine the optimal number of trees. Simulation results show that the proposed approach performs better than a simple linear approximation or L2 boosting. The proposed methodology is also illustrated through the Early Dieting in Girls study, which examines the influence of mothers' overall weight concern on daughters' dieting behavior.

摘要

在本文中,我们使用基于倾向得分的方法研究具有连续处理变量的因果推断问题。对于连续处理,广义倾向得分被定义为给定协变量(混杂因素)时处理水平的条件密度。然后通过逆概率加权估计剂量反应函数,其中权重是根据估计的倾向得分计算得出的。当协变量的维度很大时,传统的非参数密度估计会受到维度诅咒的影响。一些研究人员提出了一种两步估计程序,首先对均值函数进行建模。在本研究中,我们提出一种提升算法来估计给定协变量时处理的均值函数。在提升算法中,一个重要的调优参数是要生成的树的数量,它本质上决定了因果估计量偏差和方差之间的权衡。我们提出一种称为平均绝对相关系数(AACC)的准则来确定最优树的数量。模拟结果表明,所提出的方法比简单线性近似或L2提升表现更好。还通过女孩早期节食研究对所提出的方法进行了说明,该研究考察了母亲对总体体重的关注对女儿节食行为的影响。

相似文献

3
Optimizing Variance-Bias Trade-off in the TWANG Package for Estimation of Propensity Scores.优化TWANG软件包中用于倾向得分估计的方差-偏差权衡
Health Serv Outcomes Res Methodol. 2017 Dec;17(3-4):175-197. doi: 10.1007/s10742-016-0168-2. Epub 2016 Dec 26.
5
A Kernel-Based Metric for Balance Assessment.一种基于核的平衡评估指标。
J Causal Inference. 2018 Sep;6(2). doi: 10.1515/jci-2016-0029. Epub 2018 May 18.
10
Propensity score analysis with local balance.倾向评分分析与局部平衡。
Stat Med. 2023 Jul 10;42(15):2637-2660. doi: 10.1002/sim.9741. Epub 2023 Apr 3.

引用本文的文献

7
Childhood PM exposure and upward mobility in the United States.儿童时期 PM 暴露与美国的向上流动。
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2401882121. doi: 10.1073/pnas.2401882121. Epub 2024 Sep 9.

本文引用的文献

2
An information criterion for marginal structural models.边缘结构模型的信息准则。
Stat Med. 2013 Apr 15;32(8):1383-93. doi: 10.1002/sim.5599. Epub 2012 Sep 12.
5

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验