Szymańska Ewa, Tinnevelt Gerjen H, Brodrick Emma, Williams Mark, Davies Antony N, van Manen Henk-Jan, Buydens Lutgarde M C
TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands; Radboud University, Institute for Molecules and Materials (IMM), P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands; Radboud University, Institute for Molecules and Materials (IMM), P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
J Pharm Biomed Anal. 2016 Aug 5;127:170-5. doi: 10.1016/j.jpba.2016.01.054. Epub 2016 Jan 27.
Current challenges of clinical breath analysis include large data size and non-clinically relevant variations observed in exhaled breath measurements, which should be urgently addressed with competent scientific data tools. In this study, three different baseline correction methods are evaluated within a previously developed data size reduction strategy for multi capillary column - ion mobility spectrometry (MCC-IMS) datasets. Introduced for the first time in breath data analysis, the Top-hat method is presented as the optimum baseline correction method. A refined data size reduction strategy is employed in the analysis of a large breathomic dataset on a healthy and respiratory disease population. New insights into MCC-IMS spectra differences associated with respiratory diseases are provided, demonstrating the additional value of the refined data analysis strategy in clinical breath analysis.
当前临床呼吸分析面临的挑战包括呼出气体测量中观察到的数据量巨大以及与临床无关的变化,这些问题亟待借助有效的科学数据工具加以解决。在本研究中,在先前开发的用于多毛细管柱 - 离子迁移谱(MCC - IMS)数据集的数据量减少策略范围内,评估了三种不同的基线校正方法。首次在呼吸数据分析中引入的Top - hat方法被证明是最佳的基线校正方法。在对健康和呼吸系统疾病人群的大型呼吸组学数据集进行分析时,采用了一种改进的数据量减少策略。提供了与呼吸系统疾病相关的MCC - IMS光谱差异的新见解,证明了改进的数据分析策略在临床呼吸分析中的附加价值。