Eser Philipp, Wachutka Leonhard, Maier Kerstin C, Demel Carina, Boroni Mariana, Iyer Srignanakshi, Cramer Patrick, Gagneur Julien
Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Munich, Germany.
Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Munich, Germany.
Mol Syst Biol. 2016 Feb 16;12(2):857. doi: 10.15252/msb.20156526.
To decrypt the regulatory code of the genome, sequence elements must be defined that determine the kinetics of RNA metabolism and thus gene expression. Here, we attempt such decryption in an eukaryotic model organism, the fission yeast S. pombe. We first derive an improved genome annotation that redefines borders of 36% of expressed mRNAs and adds 487 non-coding RNAs (ncRNAs). We then combine RNA labeling in vivo with mathematical modeling to obtain rates of RNA synthesis and degradation for 5,484 expressed RNAs and splicing rates for 4,958 introns. We identify functional sequence elements in DNA and RNA that control RNA metabolic rates and quantify the contributions of individual nucleotides to RNA synthesis, splicing, and degradation. Our approach reveals distinct kinetics of mRNA and ncRNA metabolism, separates antisense regulation by transcription interference from RNA interference, and provides a general tool for studying the regulatory code of genomes.
为了解密基因组的调控密码,必须定义那些决定RNA代谢动力学进而决定基因表达的序列元件。在此,我们尝试在一种真核模式生物——裂殖酵母粟酒裂殖酵母中进行此类解密。我们首先获得了一种改进的基因组注释,它重新定义了36%的已表达mRNA的边界,并新增了487个非编码RNA(ncRNA)。然后,我们将体内RNA标记与数学建模相结合,以获得5484个已表达RNA的RNA合成和降解速率以及4958个内含子的剪接速率。我们在DNA和RNA中鉴定出控制RNA代谢速率的功能性序列元件,并量化了单个核苷酸对RNA合成、剪接和降解的贡献。我们的方法揭示了mRNA和ncRNA代谢的不同动力学,将转录干扰引起的反义调控与RNA干扰区分开来,并为研究基因组的调控密码提供了一个通用工具。