Flood Pádraic J, Kruijer Willem, Schnabel Sabine K, van der Schoor Rob, Jalink Henk, Snel Jan F H, Harbinson Jeremy, Aarts Mark G M
Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands ; Horticulture and Production Physiology, Wageningen University, Wageningen, The Netherlands ; Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands.
Plant Methods. 2016 Feb 15;12:14. doi: 10.1186/s13007-016-0113-y. eCollection 2016.
Recent advances in genome sequencing technologies have shifted the research bottleneck in plant sciences from genotyping to phenotyping. This shift has driven the development of phenomics, high-throughput non-invasive phenotyping technologies.
We describe an automated high-throughput phenotyping platform, the Phenovator, capable of screening 1440 Arabidopsis plants multiple times per day for photosynthesis, growth and spectral reflectance at eight wavelengths. Using this unprecedented phenotyping capacity, we have been able to detect significant genetic differences between Arabidopsis accessions for all traits measured, across both temporal and environmental scales. The high frequency of measurement allowed us to observe that heritability was not only trait specific, but for some traits was also time specific.
Such continuous real-time non-destructive phenotyping will allow detailed genetic and physiological investigations of the kinetics of plant homeostasis and development. The success and ultimate outcome of a breeding program will depend greatly on the genetic variance which is sampled. Our observation of temporal fluctuations in trait heritability shows that the moment of measurement can have lasting consequences. Ultimately such phenomic level technologies will provide more dynamic insights into plant physiology, and the necessary data for the omics revolution to reach its full potential.
基因组测序技术的最新进展已将植物科学中的研究瓶颈从基因分型转移到表型分析。这种转变推动了植物表型组学,即高通量非侵入性表型分析技术的发展。
我们描述了一个自动化的高通量表型分析平台——植物表型成像系统(Phenovator),它能够每天多次对1440株拟南芥植株进行光合作用、生长和八个波长光谱反射率的筛选。利用这种前所未有的表型分析能力,我们能够在时间和环境尺度上检测到所测所有性状的拟南芥不同生态型之间的显著遗传差异。高频率测量使我们观察到,遗传力不仅因性状而异,而且对某些性状来说还因时间而异。
这种连续实时的非破坏性表型分析将有助于对植物体内平衡和发育动力学进行详细的遗传和生理学研究。育种计划的成功及最终结果将在很大程度上取决于所采样的遗传变异。我们对性状遗传力随时间波动的观察表明,测量时间点可能会产生持久影响。最终,这种表型组学水平的技术将为植物生理学提供更具动态性的见解,并为组学革命充分发挥其潜力提供必要的数据。