Suppr超能文献

卵巢癌中的单基因预后生物标志物:一项荟萃分析。

Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis.

作者信息

Willis Scooter, Villalobos Victor M, Gevaert Olivier, Abramovitz Mark, Williams Casey, Sikic Branimir I, Leyland-Jones Brian

机构信息

Dept. of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD, United States of America.

Division of Medical Oncology, UC Denver, Denver, CO, United States of America.

出版信息

PLoS One. 2016 Feb 17;11(2):e0149183. doi: 10.1371/journal.pone.0149183. eCollection 2016.

Abstract

PURPOSE

To discover novel prognostic biomarkers in ovarian serous carcinomas.

METHODS

A meta-analysis of all single genes probes in the TCGA and HAS ovarian cohorts was performed to identify possible biomarkers using Cox regression as a continuous variable for overall survival. Genes were ranked by p-value using Stouffer's method and selected for statistical significance with a false discovery rate (FDR) <.05 using the Benjamini-Hochberg method.

RESULTS

Twelve genes with high mRNA expression were prognostic of poor outcome with an FDR <.05 (AXL, APC, RAB11FIP5, C19orf2, CYBRD1, PINK1, LRRN3, AQP1, DES, XRCC4, BCHE, and ASAP3). Twenty genes with low mRNA expression were prognostic of poor outcome with an FDR <.05 (LRIG1, SLC33A1, NUCB2, POLD3, ESR2, GOLPH3, XBP1, PAXIP1, CYB561, POLA2, CDH1, GMNN, SLC37A4, FAM174B, AGR2, SDR39U1, MAGT1, GJB1, SDF2L1, and C9orf82).

CONCLUSION

A meta-analysis of all single genes identified thirty-two candidate biomarkers for their possible role in ovarian serous carcinoma. These genes can provide insight into the drivers or regulators of ovarian cancer and should be evaluated in future studies. Genes with high expression indicating poor outcome are possible therapeutic targets with known antagonists or inhibitors. Additionally, the genes could be combined into a prognostic multi-gene signature and tested in future ovarian cohorts.

摘要

目的

在卵巢浆液性癌中发现新的预后生物标志物。

方法

对TCGA和HAS卵巢队列中的所有单基因探针进行荟萃分析,以确定可能的生物标志物,使用Cox回归作为总生存的连续变量。采用Stouffer法按p值对基因进行排序,并使用Benjamini-Hochberg法选择错误发现率(FDR)<.05的具有统计学意义的基因。

结果

12个mRNA高表达的基因对预后不良具有预后价值,FDR<.05(AXL、APC、RAB11FIP5、C19orf2、CYBRD1、PINK1、LRRN3、AQP1、DES、XRCC4、BCHE和ASAP3)。20个mRNA低表达的基因对预后不良具有预后价值,FDR<.05(LRIG1、SLC33A1、NUCB2、POLD3、ESR2、GOLPH3、XBP1、PAXIP1、CYB561、POLA2、CDH1、GMNN、SLC37A4、FAM174B、AGR2、SDR39U1、MAGT1GJB1、SDF2L1和C9orf82)。

结论

对所有单基因的荟萃分析确定了32个候选生物标志物在卵巢浆液性癌中的可能作用。这些基因可以为卵巢癌的驱动因素或调节因子提供见解,应在未来的研究中进行评估。高表达预示预后不良的基因可能是已知拮抗剂或抑制剂的治疗靶点。此外,这些基因可以组合成一个预后多基因特征,并在未来的卵巢队列中进行测试。

相似文献

1
Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis.
PLoS One. 2016 Feb 17;11(2):e0149183. doi: 10.1371/journal.pone.0149183. eCollection 2016.
2
Prognostic significance of differential expression of angiogenic genes in women with high-grade serous ovarian carcinoma.
Gynecol Oncol. 2015 Oct;139(1):23-9. doi: 10.1016/j.ygyno.2015.08.001. Epub 2015 Aug 7.
3
Differential expression of immune related genes in high-grade ovarian serous carcinoma.
Gynecol Oncol. 2020 Mar;156(3):662-668. doi: 10.1016/j.ygyno.2019.12.019. Epub 2020 Jan 7.
5
Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer.
Geroscience. 2023 Jun;45(3):1889-1898. doi: 10.1007/s11357-023-00742-4. Epub 2023 Mar 1.
8
Development of a multi-gene-based immune prognostic signature in ovarian Cancer.
J Ovarian Res. 2021 Jan 28;14(1):20. doi: 10.1186/s13048-021-00766-4.
10
Identification of immunity- and ferroptosis-related genes for predicting the prognosis of serous ovarian cancer.
Gene. 2022 Sep 5;838:146701. doi: 10.1016/j.gene.2022.146701. Epub 2022 Jun 28.

引用本文的文献

2
Immunohistochemical Expression of IRE1 and PERK in Breast Cancer: Associations With Clinicopathological Characteristics and Survival Outcomes.
Cancer Diagn Progn. 2025 Jun 30;5(4):515-529. doi: 10.21873/cdp.10466. eCollection 2025 Jul-Aug.
4
Role of the human cytochrome b561 family in iron metabolism and tumors (Review).
Oncol Lett. 2024 Dec 23;29(3):111. doi: 10.3892/ol.2024.14857. eCollection 2025 Mar.
5
PAXIP1 is regulated by NRF1 and is a prognosis‑related biomarker in hepatocellular carcinoma.
Biomed Rep. 2024 Dec 22;22(3):38. doi: 10.3892/br.2024.1916. eCollection 2025 Mar.
6
CYB561 a potential prognostic biomarker for liver hepatocellular carcinoma.
Clin Exp Med. 2024 Dec 21;25(1):23. doi: 10.1007/s10238-024-01522-w.
8
Expression quantitative trait loci influence DNA damage-induced apoptosis in cancer.
BMC Genomics. 2024 Dec 2;25(1):1168. doi: 10.1186/s12864-024-11068-6.
9
Deciphering the ghost proteome in ovarian cancer cells by deep proteogenomic characterization.
Cell Death Dis. 2024 Sep 30;15(9):712. doi: 10.1038/s41419-024-07046-1.
10
Unbiased discovery of cancer pathways and therapeutics using Pathway Ensemble Tool and Benchmark.
Nat Commun. 2024 Aug 24;15(1):7288. doi: 10.1038/s41467-024-51859-9.

本文引用的文献

1
Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples.
J Natl Cancer Inst. 2014 Apr 3;106(5):dju048. doi: 10.1093/jnci/dju048.
2
Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer.
J Natl Cancer Inst. 2014 Apr 3;106(5):dju049. doi: 10.1093/jnci/dju049.
3
Prognostically relevant gene signatures of high-grade serous ovarian carcinoma.
J Clin Invest. 2013 Jan;123(1):517-25. doi: 10.1172/JCI65833. Epub 2012 Dec 21.
4
BioJava: an open-source framework for bioinformatics in 2012.
Bioinformatics. 2012 Oct 15;28(20):2693-5. doi: 10.1093/bioinformatics/bts494. Epub 2012 Aug 9.
6
Angiogenic mRNA and microRNA gene expression signature predicts a novel subtype of serous ovarian cancer.
PLoS One. 2012;7(2):e30269. doi: 10.1371/journal.pone.0030269. Epub 2012 Feb 13.
8
High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway.
Clin Cancer Res. 2012 Mar 1;18(5):1374-85. doi: 10.1158/1078-0432.CCR-11-2725. Epub 2012 Jan 12.
9
Cancer statistics, 2012.
CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29. doi: 10.3322/caac.20138. Epub 2012 Jan 4.
10
Protein biomarkers of ovarian cancer: the forest and the trees.
Future Oncol. 2012 Jan;8(1):55-71. doi: 10.2217/fon.11.135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验