a Department of Protein Synthesis Enzymology , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Zabolotnogo Str, 03680 Kyiv , Ukraine.
b State Key Laboratory of Molecular and Cellular Biology , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Zabolotnogo Str, 03680 Kyiv , Ukraine.
J Biomol Struct Dyn. 2017 Feb;35(3):669-682. doi: 10.1080/07391102.2016.1155171. Epub 2016 Mar 8.
Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNA. The most important functional element of this catalytic mechanism is the 2'-OH group of the terminal adenosine 76 of Ala-tRNA, which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3'-O atom of A76.
氨酰-tRNA 合成酶是一类能够特异性地将氨基酸连接到对应的 tRNA 上,用于核糖体翻译阶段的酶。对于许多氨酰-tRNA 合成酶来说,所需的氨基酸特异性水平是通过特定的水解错误激活的氨酰-腺苷酸中间产物(预转移编辑)或通过水解错误负载的氨酰-tRNA(后转移编辑)来实现的。为了研究致病性细菌粪肠球菌脯氨酰-tRNA 合成酶对丙氨酸的后转移编辑机制,我们使用了分子建模、分子动力学模拟、量子力学(QM)计算、酶的定点突变和 tRNA 修饰。结果支持了一种新的 tRNA 辅助的丙氨酰-tRNA 水解机制。这种催化机制的最重要的功能元素是丙氨酰-tRNA 末端腺苷 76 的 2'-OH 基团,它与丙氨酸残基的羰基形成分子内氢键,强烈促进水解。QM 方法表明,水解是通过涉及两个功能不同的水分子的广义酸碱催化机制进行的。反应的过渡态被确定。编辑活性位点的氨基酸残基参与底物和两个攻击和辅助水分子的配位,将质子转移到 A76 的 3'-O 原子上。