Rayevsky A V, Sharifi M, Tukalo M A
Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Academician Zabolotny Str., Kyiv 03680, Ukraine.
Medway School of Pharmacy, Universities of Kent and Greenwich, Kent ME4 4TB, UK.
J Mol Graph Model. 2017 Sep;76:289-295. doi: 10.1016/j.jmgm.2017.06.022. Epub 2017 Jul 18.
Aminoacyl-tRNA synthetases (aaRSs) play important roles in maintaining the accuracy of protein synthesis. Some aaRSs accomplish this via editing mechanisms, among which leucyl-tRNA synthetase (LeuRS) edits non-cognate amino acid norvaline mainly by post-transfer editing. However, the molecular basis for this pathway for eukaryotic and archaeal LeuRS remain unclear. In this study, a complex of archaeal P. horikoshii LeuRS (PhLeuRS) with misacylated tRNA was modeled wherever tRNA's acceptor stem was oriented directly into the editing site. To understand the distinctive features of organization we reconstructed a complex of PhLeuRS with tRNA and visualize post-transfer editing interactions mode by performing molecular dynamics (MD) simulation studies. To study molecular basis for substrate selectivity by PhLeuRS's editing site we utilized MD simulation of the entire LeuRS complexes using a diverse charged form of tRNAs, namely norvalyl-tRNA and isoleucyl-tRNA. In general, the editing site organization of LeuRS from P.horikoshii has much in common with bacterial LeuRS. The MD simulation results revealed that the post-transfer editing substrate norvalyl-A76, binds more strongly than isoleucyl-A76. Moreover, the branched side chain of isoleucine prevents water molecules from being closer and hence the hydrolysis reaction slows significantly. To investigate a possible mechanism of the post-transfer editing reaction, by PhLeuRS we have determined that two water molecules (the attacking and assisting water molecules) are localized near the carbonyl group of the amino acid to be cleaved off. These water molecules approach the substrate from the opposite side to that observed for Thermus thermophilus LeuRS (TtLeuRS). Based on the results obtained, it was suggested that the post-transfer editing mechanism of PhLeuRS differs from that of prokaryotic TtLeuRS.
氨酰-tRNA合成酶(aaRSs)在维持蛋白质合成的准确性方面发挥着重要作用。一些aaRSs通过编辑机制来实现这一点,其中亮氨酰-tRNA合成酶(LeuRS)主要通过转移后编辑来编辑非同源氨基酸正缬氨酸。然而,真核和古菌LeuRS的这一途径的分子基础仍不清楚。在本研究中,对嗜盐栖热袍菌LeuRS(PhLeuRS)与错配氨酰化tRNA的复合物进行了建模,其中tRNA的受体茎直接朝向编辑位点。为了了解其独特的组织特征,我们重建了PhLeuRS与tRNA的复合物,并通过进行分子动力学(MD)模拟研究来可视化转移后编辑的相互作用模式。为了研究PhLeuRS编辑位点的底物选择性的分子基础,我们使用了多种带电荷形式的tRNA,即正缬氨酰-tRNA和异亮氨酰-tRNA,对整个LeuRS复合物进行了MD模拟。一般来说,嗜盐栖热袍菌LeuRS的编辑位点组织与细菌LeuRS有很多共同之处。MD模拟结果表明,转移后编辑底物正缬氨酰-A76的结合比异亮氨酰-A76更强。此外,异亮氨酸的支链侧链阻止水分子靠近,因此水解反应显著减慢。为了研究PhLeuRS转移后编辑反应的可能机制,我们确定了两个水分子(进攻水分子和辅助水分子)位于待切割氨基酸的羰基附近。这些水分子从与嗜热栖热菌LeuRS(TtLeuRS)相反的一侧接近底物。根据获得的结果,有人提出PhLeuRS的转移后编辑机制与原核TtLeuRS不同。