Suppr超能文献

学习实例相关函数进行多标签分类。

Learning Instance Correlation Functions for Multilabel Classification.

出版信息

IEEE Trans Cybern. 2017 Feb;47(2):499-510. doi: 10.1109/TCYB.2016.2519683. Epub 2016 Feb 8.

Abstract

Multilabel learning has a wide range of potential applications in reality. It attracts a great deal of attention during the past years and has been extensively studied in many fields including image annotation and text categorization. Although many efforts have been made for multilabel learning, there are two challenging issues remaining, i.e., how to exploit the correlations and how to tackle the high-dimensional problems of multilabel data. In this paper, an effective algorithm is developed for multilabel classification with utilizing those data that are relevant to the targets. The key is the construction of a coefficient-based mapping between training and test instances, where the mapping relationship exploits the correlations among the instances, rather than the explicit relationship between the variables and the class labels of data. Further, a constraint, ℓ¹-norm penalty, is performed on the mapping relationship to make the model sparse, weakening the impacts of noisy data. Our empirical study on eight public datasets shows that the proposed method is more effective in comparing with the state-of-the-art multilabel classifiers.

摘要

多标签学习在现实中有广泛的潜在应用。在过去的几年中,它引起了极大的关注,并在包括图像标注和文本分类在内的许多领域得到了广泛的研究。尽管已经为多标签学习做出了许多努力,但仍存在两个具有挑战性的问题,即如何利用相关性以及如何解决多标签数据的高维问题。在本文中,我们开发了一种有效的算法,用于利用与目标相关的数据进行多标签分类。关键是在训练和测试实例之间构建基于系数的映射,其中映射关系利用实例之间的相关性,而不是变量与数据类标签之间的显式关系。此外,在映射关系上执行约束(ℓ¹-范数惩罚)以使模型稀疏,从而削弱噪声数据的影响。我们在八个公共数据集上的实证研究表明,与最先进的多标签分类器相比,所提出的方法更为有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验