Suppr超能文献

用于多标签分类的联合概念相关性和特征-概念相关性学习

Joint Concept Correlation and Feature-Concept Relevance Learning for Multilabel Classification.

作者信息

Zhao Xiaowei, Ma Zhigang, Li Zhi, Li Zhihui

机构信息

School of Information Science and Technology, Northwest University, Xian, Shaanxi 710769, China

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

出版信息

Neural Comput. 2018 Feb;30(2):526-545. doi: 10.1162/neco_a_01036. Epub 2017 Nov 21.

Abstract

In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.

摘要

近年来,多标签分类在多媒体标注中受到了广泛关注。然而,大多数多标签分类方法仅关注多个标签和概念之间存在的内在相关性,而忽略了特征与目标概念之间的相关性。为了获得更稳健的多标签分类结果,我们提出了一种新的多标签分类方法,旨在通过利用超图来捕捉多个概念之间的相关性,超图已被证明对关系学习有益。此外,我们考虑挖掘特征-概念相关性,这在许多多标签学习算法中常常被忽视。为了更好地展示特征-概念相关性,我们对所提出的方法施加了稀疏性约束。我们将所提出的方法与其他几种多标签分类方法进行比较,并通过在几个数据集上的平均精度均值来评估分类性能。实验结果表明,所提出的方法优于现有方法。

相似文献

2
Joint Feature Selection and Classification for Multilabel Learning.联合特征选择与分类在多标签学习中的应用。
IEEE Trans Cybern. 2018 Mar;48(3):876-889. doi: 10.1109/TCYB.2017.2663838. Epub 2017 Feb 14.
3
Joint Multilabel Classification With Community-Aware Label Graph Learning.基于社区感知标签图学习的联合多标签分类。
IEEE Trans Image Process. 2016 Jan;25(1):484-93. doi: 10.1109/TIP.2015.2503700. Epub 2015 Nov 25.
4
Learning Instance Correlation Functions for Multilabel Classification.学习实例相关函数进行多标签分类。
IEEE Trans Cybern. 2017 Feb;47(2):499-510. doi: 10.1109/TCYB.2016.2519683. Epub 2016 Feb 8.
6
Regularized Matrix Factorization for Multilabel Learning With Missing Labels.正则化矩阵分解在多标签学习中处理缺失标签。
IEEE Trans Cybern. 2022 May;52(5):3710-3721. doi: 10.1109/TCYB.2020.3016897. Epub 2022 May 19.
8
Multiview matrix completion for multilabel image classification.多视图矩阵补全在多标签图像分类中的应用。
IEEE Trans Image Process. 2015 Aug;24(8):2355-68. doi: 10.1109/TIP.2015.2421309. Epub 2015 Apr 9.
9
Hybrid Noise-Oriented Multilabel Learning.面向混合噪声的多标签学习
IEEE Trans Cybern. 2020 Jun;50(6):2837-2850. doi: 10.1109/TCYB.2019.2894985. Epub 2019 Feb 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验