Nissley Daniel A, Sharma Ajeet K, Ahmed Nabeel, Friedrich Ulrike A, Kramer Günter, Bukau Bernd, O'Brien Edward P
Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Nat Commun. 2016 Feb 18;7:10341. doi: 10.1038/ncomms10341.
The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.
结构域折叠的速率以及密码子翻译的速率是决定新生蛋白质是会进行共翻译折叠并发挥功能,还是会错误折叠并产生故障的重要因素。在此,我们构建了一个化学动力学模型,该模型仅使用结构域的整体折叠和解折叠速率以及密码子翻译速率,就能计算出蛋白质结构域在合成过程中的共翻译折叠曲线。我们表明,该模型能够准确预测在体内对四种不同蛋白质分子测量得到的共翻译折叠过程。然后,我们对酵母中的多种不同蛋白质进行了预测,发现改变翻译延伸速率的同义密码子替换能够使一些蛋白质结构域从翻译后折叠转变为共翻译折叠——这一结果与先前的实验研究一致。我们的方法解释了共翻译折叠曲线的基本特征,并预测了沿着转录本编码序列在不同密码子位置改变翻译速率如何影响这种自组装过程。