Suppr超能文献

核糖体 P 位和 A 位上的氨基酸对可预测地和因果性地调节翻译延伸速率。

Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates.

机构信息

Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.

Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.

出版信息

J Mol Biol. 2020 Dec 4;432(24):166696. doi: 10.1016/j.jmb.2020.10.030. Epub 2020 Nov 3.

Abstract

Variation in translation-elongation kinetics along a transcript's coding sequence plays an important role in the maintenance of cellular protein homeostasis by regulating co-translational protein folding, localization, and maturation. Translation-elongation speed is influenced by molecular factors within mRNA and protein sequences. For example, the presence of proline in the ribosome's P- or A-site slows down translation, but the effect of other pairs of amino acids, in the context of all 400 possible pairs, has not been characterized. Here, we study Saccharomyces cerevisiae using a combination of bioinformatics, mutational experiments, and evolutionary analyses, and show that many different pairs of amino acids and their associated tRNA molecules predictably and causally encode translation rate information when these pairs are present in the A- and P-sites of the ribosome independent of other factors known to influence translation speed including mRNA structure, wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, and cognate tRNA concentration. The fast-translating pairs of amino acids that we identify are enriched four-fold relative to the slow-translating pairs across Saccharomyces cerevisiae's proteome, while the slow-translating pairs are enriched downstream of domain boundaries. Thus, the chemical identity of amino acid pairs contributes to variability in translation rates, elongation kinetics are causally encoded in the primary structure of proteins, and signatures of evolutionary selection indicate their potential role in co-translational processes.

摘要

沿转录本编码序列的翻译延伸动力学变化通过调节共翻译蛋白折叠、定位和成熟,在维持细胞蛋白稳态方面起着重要作用。翻译延伸速度受 mRNA 和蛋白质序列中的分子因素影响。例如,核糖体 P 或 A 位上脯氨酸的存在会减缓翻译速度,但在所有 400 对可能的氨基酸对的背景下,其他氨基酸对的影响尚未得到描述。在这里,我们使用生物信息学、突变实验和进化分析相结合的方法来研究酿酒酵母,并表明许多不同的氨基酸对及其相关的 tRNA 分子在核糖体的 A 和 P 位上独立于其他已知影响翻译速度的因素(包括 mRNA 结构、摆动碱基配对、三肽基序、带正电荷的上游新生链残基和同功 tRNA 浓度)存在时,可预测地和因果地编码翻译速度信息。与翻译速度较慢的氨基酸对相比,我们鉴定出的快速翻译氨基酸对在酿酒酵母蛋白质组中富集了四倍,而翻译速度较慢的氨基酸对在结构域边界下游富集。因此,氨基酸对的化学性质导致翻译速度的可变性,延伸动力学在蛋白质的一级结构中被因果编码,进化选择的特征表明它们在共翻译过程中的潜在作用。

相似文献

1
Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates.
J Mol Biol. 2020 Dec 4;432(24):166696. doi: 10.1016/j.jmb.2020.10.030. Epub 2020 Nov 3.
2
Protein Elongation, Co-translational Folding and Targeting.
J Mol Biol. 2016 May 22;428(10 Pt B):2165-85. doi: 10.1016/j.jmb.2016.03.022. Epub 2016 Mar 30.
3
Silent substitutions predictably alter translation elongation rates and protein folding efficiencies.
J Mol Biol. 2012 Sep 21;422(3):328-35. doi: 10.1016/j.jmb.2012.06.010. Epub 2012 Jun 12.
4
Inferring efficiency of translation initiation and elongation from ribosome profiling.
Nucleic Acids Res. 2020 Sep 25;48(17):9478-9490. doi: 10.1093/nar/gkaa678.
6
Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15023-15032. doi: 10.1073/pnas.1817299116. Epub 2019 Jul 10.
7
Composite effects of gene determinants on the translation speed and density of ribosomes.
Genome Biol. 2011 Nov 3;12(11):R110. doi: 10.1186/gb-2011-12-11-r110.
8
Wobble base-pairing slows in vivo translation elongation in metazoans.
RNA. 2011 Dec;17(12):2063-73. doi: 10.1261/rna.02890211. Epub 2011 Nov 1.
9
GNN Codon Adjacency Tunes Protein Translation.
Int J Mol Sci. 2024 May 29;25(11):5914. doi: 10.3390/ijms25115914.
10
High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress.
Mol Cell. 2019 Mar 7;73(5):959-970.e5. doi: 10.1016/j.molcel.2018.12.009. Epub 2019 Jan 24.

引用本文的文献

1
Predicting the translation efficiency of messenger RNA in mammalian cells.
Nat Biotechnol. 2025 Jul 25. doi: 10.1038/s41587-025-02712-x.
2
A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing.
Sci Adv. 2024 Oct 18;10(42):eado0738. doi: 10.1126/sciadv.ado0738.
3
Predicting the translation efficiency of messenger RNA in mammalian cells.
bioRxiv. 2025 Jan 18:2024.08.11.607362. doi: 10.1101/2024.08.11.607362.
4
Cell-type-specific expression of tRNAs in the brain regulates cellular homeostasis.
Neuron. 2024 May 1;112(9):1397-1415.e6. doi: 10.1016/j.neuron.2024.01.028. Epub 2024 Feb 19.
5
Chaperone requirements for de novo folding of septins.
Mol Biol Cell. 2022 Oct 1;33(12):ar111. doi: 10.1091/mbc.E22-07-0262. Epub 2022 Aug 10.
6
Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting.
Nucleic Acids Res. 2022 Aug 12;50(14):8302-8320. doi: 10.1093/nar/gkac597.
7
mRNA and tRNA modification states influence ribosome speed and frame maintenance during poly(lysine) peptide synthesis.
J Biol Chem. 2022 Jun;298(6):102039. doi: 10.1016/j.jbc.2022.102039. Epub 2022 May 17.
8
Ribosome Elongation Kinetics of Consecutively Charged Residues Are Coupled to Electrostatic Force.
Biochemistry. 2021 Nov 2;60(43):3223-3235. doi: 10.1021/acs.biochem.1c00507. Epub 2021 Oct 15.
9
Quantitative Modeling of Protein Synthesis Using Ribosome Profiling Data.
Front Mol Biosci. 2021 Jun 28;8:688700. doi: 10.3389/fmolb.2021.688700. eCollection 2021.

本文引用的文献

1
A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data.
PLoS Comput Biol. 2019 May 23;15(5):e1007070. doi: 10.1371/journal.pcbi.1007070. eCollection 2019 May.
2
High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress.
Mol Cell. 2019 Mar 7;73(5):959-970.e5. doi: 10.1016/j.molcel.2018.12.009. Epub 2019 Jan 24.
3
The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis.
J Biol Chem. 2019 Feb 8;294(6):2076-2084. doi: 10.1074/jbc.REV118.002814. Epub 2018 Nov 30.
4
Accurate design of translational output by a neural network model of ribosome distribution.
Nat Struct Mol Biol. 2018 Jul;25(7):577-582. doi: 10.1038/s41594-018-0080-2. Epub 2018 Jul 2.
5
How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation.
Annu Rev Biochem. 2018 Jun 20;87:421-449. doi: 10.1146/annurev-biochem-060815-014818.
6
Non-equilibrium coupling of protein structure and function to translation-elongation kinetics.
Curr Opin Struct Biol. 2018 Apr;49:94-103. doi: 10.1016/j.sbi.2018.01.005. Epub 2018 Feb 3.
7
Three tRNAs on the ribosome slow translation elongation.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13691-13696. doi: 10.1073/pnas.1719592115. Epub 2017 Dec 11.
8
Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding.
Cell. 2017 Jul 13;170(2):298-311.e20. doi: 10.1016/j.cell.2017.06.038.
9
eIF5A Functions Globally in Translation Elongation and Termination.
Mol Cell. 2017 Apr 20;66(2):194-205.e5. doi: 10.1016/j.molcel.2017.03.003. Epub 2017 Apr 6.
10
Synonymous Codons: Choose Wisely for Expression.
Trends Genet. 2017 Apr;33(4):283-297. doi: 10.1016/j.tig.2017.02.001. Epub 2017 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验