Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
Center for Molecular Biology of the Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
J Mol Biol. 2020 Dec 4;432(24):166696. doi: 10.1016/j.jmb.2020.10.030. Epub 2020 Nov 3.
Variation in translation-elongation kinetics along a transcript's coding sequence plays an important role in the maintenance of cellular protein homeostasis by regulating co-translational protein folding, localization, and maturation. Translation-elongation speed is influenced by molecular factors within mRNA and protein sequences. For example, the presence of proline in the ribosome's P- or A-site slows down translation, but the effect of other pairs of amino acids, in the context of all 400 possible pairs, has not been characterized. Here, we study Saccharomyces cerevisiae using a combination of bioinformatics, mutational experiments, and evolutionary analyses, and show that many different pairs of amino acids and their associated tRNA molecules predictably and causally encode translation rate information when these pairs are present in the A- and P-sites of the ribosome independent of other factors known to influence translation speed including mRNA structure, wobble base pairing, tripeptide motifs, positively charged upstream nascent chain residues, and cognate tRNA concentration. The fast-translating pairs of amino acids that we identify are enriched four-fold relative to the slow-translating pairs across Saccharomyces cerevisiae's proteome, while the slow-translating pairs are enriched downstream of domain boundaries. Thus, the chemical identity of amino acid pairs contributes to variability in translation rates, elongation kinetics are causally encoded in the primary structure of proteins, and signatures of evolutionary selection indicate their potential role in co-translational processes.
沿转录本编码序列的翻译延伸动力学变化通过调节共翻译蛋白折叠、定位和成熟,在维持细胞蛋白稳态方面起着重要作用。翻译延伸速度受 mRNA 和蛋白质序列中的分子因素影响。例如,核糖体 P 或 A 位上脯氨酸的存在会减缓翻译速度,但在所有 400 对可能的氨基酸对的背景下,其他氨基酸对的影响尚未得到描述。在这里,我们使用生物信息学、突变实验和进化分析相结合的方法来研究酿酒酵母,并表明许多不同的氨基酸对及其相关的 tRNA 分子在核糖体的 A 和 P 位上独立于其他已知影响翻译速度的因素(包括 mRNA 结构、摆动碱基配对、三肽基序、带正电荷的上游新生链残基和同功 tRNA 浓度)存在时,可预测地和因果地编码翻译速度信息。与翻译速度较慢的氨基酸对相比,我们鉴定出的快速翻译氨基酸对在酿酒酵母蛋白质组中富集了四倍,而翻译速度较慢的氨基酸对在结构域边界下游富集。因此,氨基酸对的化学性质导致翻译速度的可变性,延伸动力学在蛋白质的一级结构中被因果编码,进化选择的特征表明它们在共翻译过程中的潜在作用。