Suppr超能文献

基于不足投影数据采用具有总变分的非局部均值的迭代图像重建

Iterative image reconstruction using non-local means with total variation from insufficient projection data.

作者信息

Ertas Metin, Yildirim Isa, Kamasak Mustafa, Akan Aydin

机构信息

Department of Electrical and Electronics Engineering, Istanbul University, Istanbul, Turkey.

Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Turkey.

出版信息

J Xray Sci Technol. 2016;24(1):1-8. doi: 10.3233/XST-160529.

Abstract

In this work, algebraic reconstruction technique (ART) is extended by using non-local means (NLM) and total variation (TV) for reduction of artifacts that are due to insufficient projection data. TV and NLM algorithms use different image models and their application in tandem becomes a powerful denoising method that reduces erroneous variations in the image while preserving edges and details. Simulations were performed on a widely used 2D Shepp-Logan phantom to demonstrate performance of the introduced method (ART + TV) NLM and compare it to TV based ART (ART + TV) and ART. The results indicate that (ART + TV) NLM achieves better reconstructions compared to (ART + TV) and ART.

摘要

在这项工作中,代数重建技术(ART)通过使用非局部均值(NLM)和全变差(TV)进行扩展,以减少因投影数据不足而产生的伪影。TV和NLM算法使用不同的图像模型,它们串联应用成为一种强大的去噪方法,可减少图像中的错误变化,同时保留边缘和细节。在广泛使用的二维Shepp-Logan体模上进行了模拟,以证明所引入的方法(ART+TV)NLM的性能,并将其与基于TV的ART(ART+TV)和ART进行比较。结果表明,与(ART+TV)和ART相比,(ART+TV)NLM实现了更好的重建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验