Suppr超能文献

深度直接强化学习在金融信号表示和交易中的应用。

Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Mar;28(3):653-664. doi: 10.1109/TNNLS.2016.2522401. Epub 2016 Feb 15.

Abstract

Can we train the computer to beat experienced traders for financial assert trading? In this paper, we try to address this challenge by introducing a recurrent deep neural network (NN) for real-time financial signal representation and trading. Our model is inspired by two biological-related learning concepts of deep learning (DL) and reinforcement learning (RL). In the framework, the DL part automatically senses the dynamic market condition for informative feature learning. Then, the RL module interacts with deep representations and makes trading decisions to accumulate the ultimate rewards in an unknown environment. The learning system is implemented in a complex NN that exhibits both the deep and recurrent structures. Hence, we propose a task-aware backpropagation through time method to cope with the gradient vanishing issue in deep training. The robustness of the neural system is verified on both the stock and the commodity future markets under broad testing conditions.

摘要

我们能否训练计算机在金融资产交易中击败经验丰富的交易员?在本文中,我们通过引入用于实时金融信号表示和交易的递归深度神经网络 (NN) 来解决此挑战。我们的模型受到深度学习 (DL) 和强化学习 (RL) 两个与生物学相关的学习概念的启发。在该框架中,DL 部分自动感知动态市场条件,以进行信息特征学习。然后,RL 模块与深度表示进行交互并做出交易决策,以在未知环境中累积最终奖励。学习系统在具有深度和递归结构的复杂 NN 中实现。因此,我们提出了一种任务感知的时间反向传播方法来解决深度训练中的梯度消失问题。在广泛的测试条件下,对股票和商品期货市场进行了神经系统的稳健性验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验