Suppr超能文献

利用物联网中的深度学习算法进行金融股票投资管理。

Financial Stock Investment Management Using Deep Learning Algorithm in the Internet of Things.

机构信息

Faculty of Information, University of Toronto, Ontario, Canada.

Computer Science and Technology, Guangzhou University, Guangzhou 510006, China.

出版信息

Comput Intell Neurosci. 2022 Jul 16;2022:4514300. doi: 10.1155/2022/4514300. eCollection 2022.

Abstract

This paper aims to explore a new model to study financial stock investment management (SIM) and obtain excess returns. Consequently, it proposes a financial SIM model using deep Q network (DQN) as reinforcement earning (RL) algorithm and Long Short-Term Memory (LSTM) as deep neural network (DNN). Then, after training and optimization, the proposed model is back-tested. The research findings are as follows: the LSTM neural network (NN)-based model will import the observation of the market at each time and the change of transaction information over time. The LSTM network can find and learn the potential relationship between time series data. There are two hidden layers and one output layer in the model. The hidden layer is an LSTM structure and the output layer is the fully connected NN. DQN algorithm first stores the experience sample data of the agent-environment interaction into the experience pool. It then randomly selects a small batch of data from the experience pool to train the network. Doing so removes the correlation and dependence between samples so that the DNN model can better learn the value function in the RL task. The model can predict the future state according to historical information and decide which actions to take in the next step. Meanwhile, five stocks of Chinese A-shares are selected to form an asset pool. The initial 500,000 amount of the account is divided into five equal shares, which are invested and traded. Overall, the model account's rate of return (RoR) during the back-test is 32.12%. The Shanghai Stock Exchange (SSI) has risen by 19.157% in the same period. Thus, the model's performance has exceeded the SSI's in the same period. E stock has the maximum RoR of 78.984%. The RoR of A, B, and C stocks is 54.129%, 11.594%, and 9.815%, respectively. B stock presents a minimum RoR of 6.084%. All these stocks have got positive returns. Therefore, the proposed financial SIM based on the DL algorithm is scientific and feasible. The research content has certain significant reference for the DL-based financial SIM.

摘要

本文旨在探索一种新的模型,以研究金融股票投资管理(SIM)并获得超额收益。因此,提出了一种使用深度 Q 网络(DQN)作为强化收益(RL)算法和长短期记忆(LSTM)作为深度神经网络(DNN)的金融 SIM 模型。然后,在训练和优化后,对提出的模型进行回溯测试。研究结果如下:基于 LSTM 神经网络(NN)的模型将在每个时间点导入市场观察结果以及交易信息随时间的变化。LSTM 网络可以发现并学习时间序列数据之间的潜在关系。模型有两个隐藏层和一个输出层。隐藏层是 LSTM 结构,输出层是全连接 NN。DQN 算法首先将代理-环境交互的经验样本数据存储到经验池中。然后,从经验池中随机选择一小批数据来训练网络。这样做消除了样本之间的相关性和依赖性,使 DNN 模型能够更好地学习 RL 任务中的值函数。模型可以根据历史信息预测未来状态,并决定下一步采取哪些行动。同时,选择了五支中国 A 股股票组成资产池。账户的初始 50 万金额分为五等份,进行投资和交易。总体而言,回溯测试中模型账户的回报率(RoR)为 32.12%。同期,上海证券交易所(SSI)上涨 19.157%。因此,模型的表现超过了同期的 SSI。E 股的 RoR 最高,为 78.984%。A、B 和 C 股的 RoR 分别为 54.129%、11.594%和 9.815%。B 股的 RoR 最低,为 6.084%。所有这些股票都获得了正回报。因此,基于 DL 算法的金融 SIM 是科学可行的。研究内容对基于 DL 的金融 SIM 具有一定的重要参考价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ee/9308509/357943e55cd0/CIN2022-4514300.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验