Richardson Charles J, First Eric A
Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport , 1501 Kings Highway, Shreveport, Louisiana 71130, United States.
Biochemistry. 2016 Mar 15;55(10):1541-53. doi: 10.1021/acs.biochem.5b01167. Epub 2016 Mar 2.
Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine.
核糖体对mRNA的翻译具有立体特异性,只有L-氨基酸被掺入新生的多肽链中。这种立体特异性源于蛋白质合成过程中三个步骤对D-氨基酸的排斥:(1)氨酰-tRNA合成酶对tRNA的氨酰化;(2)氨酰-tRNA与EF-Tu的结合;(3)核糖体对氨酰-tRNA的识别。作为在蛋白质合成过程中掺入D-氨基酸的第一步,我们改变了酪氨酰-tRNA合成酶的对映选择性。这种酶在氨酰-tRNA合成酶中是不寻常的,因为它可以用D-酪氨酸使tRNA氨酰化(尽管与L-酪氨酸相比速率较低)。为了改变酪氨酰-tRNA合成酶的对映选择性,我们将嗜热栖热放线菌苯丙氨酰-tRNA合成酶的转移后编辑结构域引入嗜热栖热放线菌酪氨酰-tRNA合成酶的连接多肽1(CP1)结构域(以下简称TyrRS-FRSed)。我们表明,苯丙氨酰-tRNA合成酶编辑结构域具有立体特异性,可水解L-Tyr-tRNA(Tyr),但不能水解D-Tyr-tRNA(Tyr)。我们进一步表明,将苯丙氨酰-tRNA合成酶编辑结构域插入酪氨酰-tRNA合成酶的CP1结构域会降低酪氨酰-tRNA合成酶合成位点的活性。这种活性的降低至关重要,因为它可防止合成速率超过编辑结构域水解L-Tyr-tRNA(Tyr)产物的能力。总体而言,插入苯丙氨酰-tRNA合成酶编辑结构域会使酪氨酰-tRNA合成酶对D-Tyr-tRNA(Tyr)产物的对映选择性发生2倍的偏移。当使用4倍过量的D-酪氨酸时,约40%的tRNA(Tyr)会被D-酪氨酸氨酰化。