利用抗原加工限制进行CD4+ T细胞表位预测。

CD4+ T-cell epitope prediction using antigen processing constraints.

作者信息

Mettu Ramgopal R, Charles Tysheena, Landry Samuel J

机构信息

Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.

Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA.

出版信息

J Immunol Methods. 2016 May;432:72-81. doi: 10.1016/j.jim.2016.02.013. Epub 2016 Feb 15.

Abstract

T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.

摘要

T细胞CD4+表位是针对传染病和癌症的免疫重要靶点。目前最先进的MHC II类表位预测方法依赖于监督学习方法,即在该方法中,使用一组具有经实验测试的MHC II类结合亲和力的肽训练集构建序列特异性的隐式或显式模型。在本文中,我们提出了一种基于对抗抗原加工限制进行建模的新型CD4+ T细胞表位预测方法。先前的研究表明,主要的CD4+ T细胞表位往往出现在初始蛋白水解切割位点附近。对于具有已知三维结构的抗原,我们的算法首先汇总四种类型的构象稳定性数据,以构建一个稳定性概况,使我们能够识别蛋白质中最易受蛋白水解作用的区域。然后,利用这一概况,我们根据从不稳定区域到稳定区域的转变模式构建表位可能性概况。我们使用35个数据集验证了我们的方法,这些数据集来自携带I-Ab或HLA-DR4等位基因的小鼠以及人类受试者的经实验测量的CD4+ T细胞反应。总体而言,我们的结果表明,抗原加工限制提供了重要的预测能力来源。对于单等位基因系统中的表位预测,我们的方法可以与基于序列的方法相结合,或者用于几乎没有或没有训练数据的情况。在多等位基因系统中,只有在已知人群的等位基因分布时才能使用基于序列的方法。相比之下,我们的方法不利用MHC结合预测,因此对MHC II类基因型不敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索