Munekage Yuri Nakajima, Taniguchi Yukimi Y
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan.
Plant Cell Physiol. 2016 May;57(5):897-903. doi: 10.1093/pcp/pcw012. Epub 2016 Feb 17.
C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species.
C4光合作用存在于约7500种植物中,这些植物分属于19个科,包括单子叶植物和双子叶植物。在大多数已记录的案例中,植物采用一种利用四碳化合物代谢循环的双细胞二氧化碳浓缩系统。C4光合作用多次从C3光合作用进化而来,可能是受到其在热带和亚热带炎热、通常干燥且营养贫瘠的土壤中所赋予的生存优势驱动。在苹果酸酶型C4光合作用的进化过程中,C4代谢循环的发展极大地增加了叶绿体中的ATP需求,而C4代谢所需的额外ATP可能由围绕PSI的循环电子传递产生。最近的研究揭示了循环电子传递的本质及其在C4进化过程中各组分的增加。在这篇综述中,我们利用对黄菊属植物的研究,讨论了C3和C4光合作用的能量需求、围绕PSI的循环电子传递的当前模型,以及在C4进化过程中循环电子传递是如何被促进的,黄菊属包含许多密切相关的C3、C4和C3-C4中间物种。