Guan Boxin, Zhang Changsheng, Ning Jiaxu
College of Information Science & Engineering, Northeastern University , Shenyang, People's Republic of China .
J Comput Biol. 2016 Jul;23(7):585-96. doi: 10.1089/cmb.2015.0190. Epub 2016 Feb 19.
Protein-ligand docking can be formulated as a search algorithm associated with an accurate scoring function. However, most current search algorithms cannot show good performance in docking problems, especially for highly flexible docking. To overcome this drawback, this article presents a novel and robust optimization algorithm (EDGA) based on the Lamarckian genetic algorithm (LGA) for solving flexible protein-ligand docking problems. This method applies a population evolution direction-guided model of genetics, in which search direction evolves to the optimum solution. The method is more efficient to find the lowest energy of protein-ligand docking. We consider four search methods-a tradition genetic algorithm, LGA, SODOCK, and EDGA-and compare their performance in docking of six protein-ligand docking problems. The results show that EDGA is the most stable, reliable, and successful.
蛋白质-配体对接可被表述为一种与精确评分函数相关联的搜索算法。然而,当前大多数搜索算法在对接问题中表现不佳,尤其是对于高度灵活的对接。为克服这一缺点,本文提出了一种基于拉马克遗传算法(LGA)的新颖且稳健的优化算法(EDGA),用于解决灵活的蛋白质-配体对接问题。该方法应用了一种遗传的种群进化方向引导模型,其中搜索方向朝着最优解进化。该方法在寻找蛋白质-配体对接的最低能量方面效率更高。我们考虑了四种搜索方法——传统遗传算法、LGA、SODOCK和EDGA,并比较了它们在六个蛋白质-配体对接问题对接中的性能。结果表明,EDGA是最稳定、可靠且成功的。