Yang Yuhui, Karakhanova Svetlana, Hartwig Werner, D'Haese Jan G, Philippov Pavel P, Werner Jens, Bazhin Alexandr V
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Department of General Surgery, University of Heidelberg, Heidelberg, Germany.
J Cell Physiol. 2016 Dec;231(12):2570-81. doi: 10.1002/jcp.25349. Epub 2016 Jun 20.
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
线粒体对于能量代谢、细胞凋亡调控及细胞信号传导而言不可或缺。恶性细胞中的线粒体在结构和功能上与正常细胞中的线粒体有所不同,并积极参与代谢重编程。癌细胞中的线粒体具有活性氧(ROS)过量产生的特征,ROS通过诱导基因组不稳定、改变基因表达及参与信号通路来促进癌症发展。由氧化损伤导致的线粒体和核DNA突变会损害氧化磷酸化过程,进而导致线粒体ROS进一步产生,从而形成线粒体、ROS、基因组不稳定及癌症发展之间的“恶性循环”。线粒体的多种重要作用已被用于设计新型线粒体靶向抗癌药物。将药物选择性递送至线粒体有助于提高这些药物的特异性并降低其毒性。为了减少线粒体ROS的产生,线粒体靶向抗氧化剂可通过与亲脂性穿透阳离子结合而特异性地在线粒体中积累,从而防止线粒体受到氧化损伤。与ROS的致癌作用一致,线粒体靶向抗氧化剂在癌症预防和抗癌治疗中被发现是有效的。更好地理解线粒体在癌症发展中所起的作用将有助于揭示更多的治疗靶点,并有助于提高线粒体靶向抗癌药物的活性和选择性。在本综述中,我们总结了线粒体对癌症的影响,并概述了靶向线粒体进行抗癌治疗的可能性。《细胞生理学杂志》231: 2570 - 2581, 2016。© 2016威利期刊公司