Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom; Department of Soil and Environment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom.
Sci Total Environ. 2016 Dec 1;572:1520-1533. doi: 10.1016/j.scitotenv.2016.02.046. Epub 2016 Feb 17.
In agricultural catchments, diffuse nutrient fluxes (mainly nitrogen N and phosphorus P), are observed to pollute receiving waters and cause eutrophication. Organic matter (OM) is important in mediating biogeochemical processes in freshwaters. Time series of the variation in nutrient and OM loads give insights into flux processes and their impact on biogeochemistry but are costly to maintain and challenging to analyse for elements that are highly reactive in the environment. We evaluated the capacity of the automated monitoring to capture typically low baseflow concentrations of the reactive forms of nutrients and OM: total reactive phosphorus (TRP), nitrate nitrogen (NO-N) and tryptophan-like fluorescence (TLF). We compared the performance of in situ monitoring (wet chemistry analyser, UV-vis and fluorescence sensors) and automated grab sampling without instantaneous analysis using autosamplers. We found that automatic grab sampling shows storage transformations for TRP and TLF and do not reproduce the diurnal concentration pattern captured by the in situ analysers. The in situ TRP and fluorescence analysers respond to temperature variation and the relationship is concentration-dependent. Accurate detection of low P concentrations is particularly challenging due to large errors associated with both the in situ and autosampler measurements. Aquatic systems can be very sensitive to even low concentrations of P typical of baseflow conditions. Understanding transformations and measurement variability in reactive forms of nutrients and OM associated with in situ analysis is of great importance for understanding in-stream biogeochemical functioning and establishing robust monitoring protocols.
在农业流域中,观察到弥散性养分通量(主要是氮 N 和磷 P)污染受纳水体并导致富营养化。有机物 (OM) 在调节淡水生物地球化学过程中非常重要。养分和 OM 负荷变化的时间序列可深入了解通量过程及其对生物地球化学的影响,但对于在环境中高度反应的元素,维持和分析这些时间序列非常昂贵。我们评估了自动监测捕捉通常是低基流浓度的反应性养分和 OM 的能力:总反应性磷 (TRP)、硝酸盐氮 (NO-N) 和色氨酸样荧光 (TLF)。我们比较了原位监测(湿法化学分析仪、UV-vis 和荧光传感器)和自动采集而无需即时分析的自动采样器的性能。我们发现,自动采集采样显示 TRP 和 TLF 的存储转化,并且不能再现原位分析仪捕获的昼夜浓度模式。原位 TRP 和荧光分析仪对温度变化有响应,并且这种关系是浓度依赖性的。由于原位和自动采样器测量都存在较大误差,因此准确检测低 P 浓度尤其具有挑战性。水生系统对基流条件下典型的低 P 浓度非常敏感。了解与原位分析相关的反应性养分和 OM 的转化和测量变异性对于理解溪流生物地球化学功能和建立稳健的监测协议非常重要。