Suppr超能文献

使用ReUPred鉴定蛋白质结构中的重复单元。

Identification of repetitive units in protein structures with ReUPred.

作者信息

Hirsh Layla, Piovesan Damiano, Paladin Lisanna, Tosatto Silvio C E

机构信息

Department of Biomedical Sciences, University of Padua, Padua, Italy.

Department of Engineering, Pontificia Universidad Católica del Perú, Lima, Perú

出版信息

Amino Acids. 2016 Jun;48(6):1391-400. doi: 10.1007/s00726-016-2187-2. Epub 2016 Feb 22.

Abstract

Over the last decade, numerous studies have demonstrated the fundamental importance of tandem repeat (TR) proteins in many biological processes. A plethora of new repeat structures have also been solved. The recently published RepeatsDB provides information on TR proteins. However, a detailed structural characterization of repetitive elements is largely missing, as repeat unit annotation is manually curated and currently covers only 3 % of the bona fide TR proteins. Repeat Protein Unit Predictor (ReUPred) is a novel method for the fast automatic prediction of repeat units and repeat classification using an extensive Structure Repeat Unit Library (SRUL) derived from RepeatsDB. ReUPred uses an iterative structural search against the SRUL to find repetitive units. On a test set of solenoid proteins, ReUPred is able to correctly detect 92 % of the proteins. Unlike previous methods, it is also able to correctly classify solenoid repeats in 89 % of cases. It also outperforms two recent state-of-the-art methods for the repeat unit identification problem. The accurate prediction of repeat units increases the number of annotated repeat units by an order of magnitude compared to the sequence-based Pfam classification. ReUPred is implemented in Python for Linux and freely available from the URL: http://protein.bio.unipd.it/reupred/ .

摘要

在过去十年中,大量研究已证明串联重复(TR)蛋白在许多生物过程中具有至关重要的作用。众多新的重复结构也已得到解析。最近发布的RepeatsDB提供了有关TR蛋白的信息。然而,由于重复单元注释是人工整理的,目前仅涵盖3%的真正TR蛋白,因此对重复元件的详细结构表征在很大程度上缺失。重复蛋白单元预测器(ReUPred)是一种新颖的方法,它使用从RepeatsDB衍生而来的广泛的结构重复单元库(SRUL),快速自动预测重复单元并进行重复分类。ReUPred对SRUL进行迭代结构搜索以找到重复单元。在一组螺线管蛋白测试集中,ReUPred能够正确检测出92%的蛋白。与先前的方法不同,它在89%的情况下也能够正确分类螺线管重复。在重复单元识别问题上,它也优于最近的两种最先进方法。与基于序列的Pfam分类相比,重复单元的准确预测使注释的重复单元数量增加了一个数量级。ReUPred用Python为Linux实现,可从以下网址免费获取:http://protein.bio.unipd.it/reupred/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验