Suppr超能文献

质谱数据的综合拓扑分析揭示了食管鳞状细胞癌中具有临床相关性的分子特征。

Integrative topological analysis of mass spectrometry data reveals molecular features with clinical relevance in esophageal squamous cell carcinoma.

作者信息

Gao She-Gan, Liu Rui-Min, Zhao Yun-Gang, Wang Pei, Ward Douglas G, Wang Guang-Chao, Guo Xiang-Qian, Gu Juan, Niu Wan-Bin, Zhang Tian, Martin Ashley, Guo Zhi-Peng, Feng Xiao-Shan, Qi Yi-Jun, Ma Yuan-Fang

机构信息

Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, P. R. China, 471003.

Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China.

出版信息

Sci Rep. 2016 Feb 22;6:21586. doi: 10.1038/srep21586.

Abstract

Combining MS-based proteomic data with network and topological features of such network would identify more clinically relevant molecules and meaningfully expand the repertoire of proteins derived from MS analysis. The integrative topological indexes representing 95.96% information of seven individual topological measures of node proteins were calculated within a protein-protein interaction (PPI) network, built using 244 differentially expressed proteins (DEPs) identified by iTRAQ 2D-LC-MS/MS. Compared with DEPs, differentially expressed genes (DEGs) and comprehensive features (CFs), structurally dominant nodes (SDNs) based on integrative topological index distribution produced comparable classification performance in three different clinical settings using five independent gene expression data sets. The signature molecules of SDN-based classifier for distinction of early from late clinical TNM stages were enriched in biological traits of protein synthesis, intracellular localization and ribosome biogenesis, which suggests that ribosome biogenesis represents a promising therapeutic target for treating ESCC. In addition, ITGB1 expression selected exclusively by integrative topological measures correlated with clinical stages and prognosis, which was further validated with two independent cohorts of ESCC samples. Thus the integrative topological analysis of PPI networks proposed in this study provides an alternative approach to identify potential biomarkers and therapeutic targets from MS/MS data with functional insights in ESCC.

摘要

将基于质谱的蛋白质组学数据与网络及其拓扑特征相结合,将识别出更多临床相关分子,并切实扩大源自质谱分析的蛋白质种类。在使用iTRAQ 2D-LC-MS/MS鉴定出的244个差异表达蛋白(DEP)构建的蛋白质-蛋白质相互作用(PPI)网络中,计算了代表节点蛋白七种个体拓扑度量95.96%信息的综合拓扑指数。与DEP、差异表达基因(DEG)和综合特征(CF)相比,基于综合拓扑指数分布的结构优势节点(SDN)在使用五个独立基因表达数据集的三种不同临床环境中产生了可比的分类性能。基于SDN的分类器用于区分临床TNM早期和晚期阶段的特征分子在蛋白质合成、细胞内定位和核糖体生物发生的生物学特性中富集,这表明核糖体生物发生是治疗食管癌的一个有前景的治疗靶点。此外,仅通过综合拓扑度量选择的ITGB1表达与临床分期和预后相关,并在两个独立的食管癌样本队列中得到进一步验证。因此,本研究提出的PPI网络综合拓扑分析提供了一种从MS/MS数据中识别潜在生物标志物和治疗靶点的替代方法,并对食管癌有功能上的深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85bb/4761933/8b4e6f1daf45/srep21586-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验