Wu Hong-Zhang, Bandaru Sateesh, Wang Da, Liu Jin, Lau Woon Ming, Wang Zhenling, Li Li-Li
The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, China.
Beijing Computational Science Research Center, Beijing 100084, China.
Phys Chem Chem Phys. 2016 Mar 14;18(10):7359-66. doi: 10.1039/c5cp07440a.
Interfacial issues, such as the interfacial structure and the interdiffusion of atoms at the interface, are fundamental to the understanding of the ignition and reaction mechanisms of nanothermites. This study employs first-principle density functional theory to model Al/MoO3 by placing an Al adatom onto a unit cell of a MoO3(010) slab, and to probe the initiation of interfacial interactions of Al/MoO3 nanothermite by tracking the adsorption and subsurface-penetration of the Al adatom. The calculations show that the Al adatom can spontaneously go through the topmost atomic plane (TAP) of MoO3(010) and reach the 4-fold hollow adsorption-site located below the TAP, with this subsurface adsorption configuration being the most preferred one among all plausible adsorption configurations. Two other plausible configurations place the Al adatom at two bridge sites located above the TAP of MoO3(010) but the Al adatom can easily penetrate below this TAP to a relatively more stable adsorption configuration, with a small energy barrier of merely 0.2 eV. The evidence of subsurface penetration of Al implies that Al/MoO3 likely has an interface with intermixing of Al, Mo and O atoms. These results provide new insights on the interfacial interactions of Al/MoO3 and the ignition/combustion mechanisms of Al/MoO3 nanothermites.
界面问题,如界面结构和界面处原子的相互扩散,对于理解纳米铝热剂的点火和反应机制至关重要。本研究采用第一性原理密度泛函理论,通过将一个铝吸附原子放置在MoO3(010)平板的一个晶胞上对Al/MoO3进行建模,并通过跟踪铝吸附原子的吸附和亚表面渗透来探究Al/MoO3纳米铝热剂界面相互作用的起始。计算结果表明,铝吸附原子能够自发地穿过MoO3(010)的最顶层原子平面(TAP),并到达位于TAP下方的四重中空吸附位点,这种亚表面吸附构型在所有可能的吸附构型中是最优选的。另外两种可能的构型将铝吸附原子置于MoO3(010)的TAP上方的两个桥位,但铝吸附原子能够轻易地穿透到该TAP下方,形成相对更稳定的吸附构型,其能量势垒仅为0.2 eV。铝亚表面渗透的证据表明,Al/MoO3可能具有一个Al、Mo和O原子相互混合的界面。这些结果为Al/MoO3的界面相互作用以及Al/MoO3纳米铝热剂的点火/燃烧机制提供了新的见解。