Mestankova Hana, Parker Austa M, Bramaz Nadine, Canonica Silvio, Schirmer Kristin, von Gunten Urs, Linden Karl G
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, CH-8600 Dübendorf, Switzerland.
Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
Water Res. 2016 Apr 15;93:110-120. doi: 10.1016/j.watres.2015.12.048. Epub 2016 Jan 21.
The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes.
在水处理过程中去除新兴污染物是当前的一个问题,人们正在探索各种技术。这些技术包括基于紫外线和臭氧的高级氧化工艺(AOPs)。在本研究中,探索了AOPs对美国环境保护局饮用水污染物候选名单3(CCL3)中25种化学污染物的降解能力。其中23种被发现适合基于羟基自由基的处理,它们与羟基自由基(OH)反应的二级速率常数在3 - 8×10⁹ M⁻¹ s⁻¹范围内。使用Ames和YES生物测定法跟踪污染物生物活性的发展,重点关注致突变性和雌激素活性,以检测氧化处理过程中生物效应的潜在变化,同时进行它们的降解。大多数处理案例中,母体化合物氧化后生物活性丧失,且未产生任何形式的雌激素活性或致突变性。然而,通过以下CCL3母体化合物的氧化转化检测到致突变活性增加:硝基苯(OH,紫外线光解)、喹啉(OH,臭氧)、甲胺磷(OH)、N - 亚硝基吡咯烷(OH)、N - 亚硝基二丙胺(OH)、苯胺(紫外线光解)和N - 亚硝基二苯胺(紫外线光解)。仅观察到一例雌激素活性形成的情况,即喹啉被OH氧化。总体而言,本研究提供了关于基于AOPs处理特定关注化合物的基础和实用信息,并代表了一个评估基于转化的处理过程性能的框架。