Chen Wei R, Sharpless Charles M, Linden Karl G, Suffet I H
Department of Environmental Health Sciences, Environmental Science and Engineering Program, University of California at Los Angeles, Los Angeles, California 90095, USA.
Environ Sci Technol. 2006 Apr 15;40(8):2734-9. doi: 10.1021/es051961m.
Seven volatile organic chemicals (VOCs) on the EPA Contaminant Candidate List together with 1,1-dichloropropane were studied for their reaction kinetics and mechanisms with ozone and OH radicals during ozonation and the ozone/ hydrogen peroxide advanced oxidation process (O3/H2O2 AOP) using batch reactors. The three aromatic VOCs demonstrated high reactivity during ozonation and were eliminated within minutes after ozone addition. The high reactivity is attributed to their fast, indirect OH radical reactions with k(OH,M) of (5.3-6.6) x 10(9) M(-1) s(-1). Rates of aromatic VOC degradation are in the order 1,2,4-trimethylbenzene > p-cymene > bromobenzene. This order is caused by the selectivity of the direct ozone reactions (k(O3,M) ranges from 0.16 to 304 M(-1) s(-1)) and appears to be related to the electron-donating or -withdrawing ability of the substituent groups on the aromatic ring. The removal rates for the five aliphatic VOCs are much lower and are in the order 1,1-dichloropropane > 1,3-dichloropropane > 1,1-dichloroethane > 2,2-dichloropropane > 1,1,2,2-tetrachloroethane. The second-order indirect rate constants for the aliphatic VOCs range from 0.52 x 10(8) to 5.5 x 10(8) M(-1) s(-1). The relative stability of the carbon-centered intermediates seems to be related to the relative reactivity of the aliphatic VOCs with OH radicals. Except for 1,3-dichloropropane, ozonation and the O3/H2O2 AOP are not effective for the removal of other aliphatic VOCs. Bromide formation during the ozonation of bromobenzene indicates that bromate can be formed, and thus, ozonation and O3/H2O2 AOP may not be suitable for the treatment of bromobenzene.
利用间歇式反应器,对美国环境保护局(EPA)污染物候选名单上的七种挥发性有机化合物(VOCs)以及1,1 - 二氯丙烷在臭氧化过程和臭氧/过氧化氢高级氧化工艺(O3/H2O2 AOP)中与臭氧和羟基自由基的反应动力学及反应机理进行了研究。三种芳香族VOCs在臭氧化过程中表现出高反应活性,在加入臭氧后几分钟内就被去除。这种高反应活性归因于它们与羟基自由基快速的间接反应,其与羟基自由基的反应速率常数k(OH,M)为(5.3 - 6.6)×10(9) M(-1) s(-1)。芳香族VOCs的降解速率顺序为1,2,4 - 三甲基苯 > 对异丙基苯 > 溴苯。这个顺序是由直接臭氧反应的选择性(k(O3,M)范围为0.16至304 M(-1) s(-1))导致的,并且似乎与芳香环上取代基的供电子或吸电子能力有关。五种脂肪族VOCs的去除速率要低得多,顺序为1,1 - 二氯丙烷 > 1,3 - 二氯丙烷 > 1,1 - 二氯乙烷 > 2,2 - 二氯丙烷 > 1,1,2,2 - 四氯乙烷。脂肪族VOCs的二级间接反应速率常数范围为0.52×10(8)至5.5×10(8) M(-1) s(-1)。以碳为中心的中间体的相对稳定性似乎与脂肪族VOCs与羟基自由基的相对反应活性有关。除了1,3 - 二氯丙烷外,臭氧化和O3/H2O2 AOP对去除其他脂肪族VOCs无效。溴苯臭氧化过程中溴化物的形成表明可能会形成溴酸盐,因此,臭氧化和O3/H2O2 AOP可能不适用于处理溴苯。