Suppr超能文献

基于辣根过氧化物酶和葡萄糖氧化酶固定在电极上的多响应共聚膜中的生物电化学的多输入和多输出逻辑电路。

Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.

机构信息

College of Chemistry, Beijing Normal University, 19, Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China.

Beijing No. 55 High School, Beijing 100027, People's Republic of China.

出版信息

Biosens Bioelectron. 2016 Jun 15;80:631-639. doi: 10.1016/j.bios.2016.02.010. Epub 2016 Feb 6.

Abstract

Herein, poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethylmethacrylate) copolymer films were polymerized on electrode surface with a simple one-step method, and the enzyme horseradish peroxidase (HRP) was embedded in the films simultaneously, which were designated as P(NiPAAm-co-DMEM)-HRP. The films exhibited a reversible structure change with the external stimuli, such as pH, CO2, temperature and SO4(2-), causing the cyclic voltammetric (CV) response of electroactive K3Fe(CN)6 at the film electrodes to display the corresponding multi-stimuli sensitive ON-OFF behavior. Based on the switchable CV property of the system and the electrochemical reduction of H2O2 catalyzed by HRP in the films and mediated by Fe(CN)6(3-) in solution, a 5-input/3-output logic gate was established. To further increase the complexity of the logic system, another enzyme glucose oxidase (GOD) was added into the films, designated as P(NiPAAm-co-DMEM)-HRP-GOD. In the presence of oxygen, the oxidation of glucose in the solution was catalyzed by GOD in the films, and the produced H2O2 in situ was recognized and electrocatalytically reduced by HRP and mediated by Fe(CN)6(3-). Based on the bienzyme films, a cascaded or concatenated 4-input/3-output logic gate system was proposed. The present work combined the multi-responsive interface with bioelectrocatalysis to construct cascaded logic circuits, which might open a new avenue to develop biocomputing elements with more sophisticated functions and design novel glucose biosensors.

摘要

在此,通过简单的一步法在电极表面聚合聚(N-异丙基丙烯酰胺-co-N,N'-二甲氨基乙基甲基丙烯酸酯)共聚物膜,并同时将辣根过氧化物酶(HRP)嵌入膜中,将其命名为 P(NiPAAm-co-DMEM)-HRP。该膜对外界刺激(如 pH、CO2、温度和 SO4(2-))具有可逆的结构变化,导致膜电极上电活性 K3Fe(CN)6 的循环伏安(CV)响应显示出相应的多刺激敏感的开-关行为。基于该体系的可切换 CV 特性以及 HRP 在膜中以及溶液中 Fe(CN)6(3-)介导下对 H2O2 的电化学还原,建立了一个 5 输入/3 输出逻辑门。为了进一步提高逻辑系统的复杂性,将另一种酶葡萄糖氧化酶(GOD)添加到膜中,命名为 P(NiPAAm-co-DMEM)-HRP-GOD。在氧气存在的情况下,溶液中的葡萄糖在膜中的 GOD 催化下被氧化,原位产生的 H2O2 被 HRP 识别并通过 Fe(CN)6(3-)介导进行电催化还原。基于双酶膜,提出了级联或串联的 4 输入/3 输出逻辑门系统。本工作将多响应界面与生物电化学相结合,构建级联逻辑电路,为开发具有更复杂功能的生物计算元件和设计新型葡萄糖生物传感器开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验