Zakel Sabine, Pollakowski Beatrix, Streeck Cornelia, Wundrack Stefan, Weber Alfons, Brunken Stefan, Mainz Roland, Beckhoff Burckhardt, Stosch Rainer
Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany.
Appl Spectrosc. 2016 Feb;70(2):279-88. doi: 10.1177/0003702815620131.
The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1-xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1-xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage values from lateral Raman mappings is developed together with a complete uncertainty budget. Raman and X-ray spectrometry have here been proven as complementary nondestructive methods combining surface sensitivity and in-depth information on elemental and species distribution for the reliable quality control of Cu(In1-xGax)Se2 absorbers and Cu(In1-xGax)3Se5 surface layer formation.
当将过程控制参数与产品的保证物理性能联系起来时,测量量的可追溯性是一个基本条件。使用拉曼光谱作为监测Cu(In1-xGax)Se2薄膜太阳能电池生产的分析工具,针对化学成分和横向尺寸进行适当校准是一个关键前提。本研究展示了如何满足拉曼显微镜校准的多重要求。通过无参考X射线荧光分析追溯样品的表面元素组成以及整体元素组成。然后为相关的Cu(In1-xGax)Se2相关化合物生成参考拉曼光谱。借助一种新型尺寸标准校准横向尺寸,该标准的规则结构已通过计量扫描力显微镜追溯到国际单位制。在此基础上,开发了一种从横向拉曼映射定量测定表面覆盖率值的方法以及完整的不确定度预算。拉曼光谱和X射线光谱在此已被证明是互补的非破坏性方法,结合了表面灵敏度以及关于元素和物种分布的深度信息,用于Cu(In1-xGax)Se2吸收体和Cu(In1-xGax)3Se5表面层形成的可靠质量控制。