Suppr超能文献

新发1型糖尿病患者疾病进展的遗传风险评分模型:胰岛表达和细胞因子调节候选基因的遗传负荷增加预示血糖控制较差。

Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control.

作者信息

Brorsson Caroline A, Nielsen Lotte B, Andersen Marie Louise, Kaur Simranjeet, Bergholdt Regine, Hansen Lars, Mortensen Henrik B, Pociot Flemming, Størling Joachim

机构信息

Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics E, University Hospital Herlev, 2730 Herlev, Denmark.

Novo Nordisk A/S, 2760 Måløv, Denmark.

出版信息

J Diabetes Res. 2016;2016:9570424. doi: 10.1155/2016/9570424. Epub 2016 Jan 20.

Abstract

Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on β-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual β-cell function in type 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to proinflammatory cytokines (IL-1β + IFNγ + TNFα) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited for optimizing treatment.

摘要

全基因组关联研究(GWAS)已鉴定出40多个1型糖尿病风险位点。这些位点在疾病进展过程中对β细胞功能的临床影响尚不清楚。我们旨在测试遗传风险评分是否可以预测1型糖尿病(T1D)患者的血糖控制和残余β细胞功能。由于基因表达可能代表遗传变异与疾病之间的中间表型,我们假设在胰岛中表达且受促炎细胞因子转录调控的T1D位点内的基因是疾病进展的最佳预测指标。在检测的46个GWAS候选基因中,三分之二在人胰岛中表达,其中11个在暴露于促炎细胞因子(IL-1β + IFNγ + TNFα)48小时后表达水平发生显著变化。利用每个位点的GWAS单核苷酸多态性(SNP),我们根据新诊断的T1D儿童携带的风险等位基因的累积数量构建了一个遗传风险评分。每多携带一个风险等位基因,诊断后第一年内HbA1c水平就会显著升高。网络和基因本体(GO)分析显示,11个候选基因中的几个具有重叠的生物学功能,并在一个共同的网络中相互作用。我们的结果可能有助于预测新诊断的T1D儿童的疾病进展,这可用于优化治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验