Gilbert Robert J C, Sonnen Andreas F-P
Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany.
Eur Biophys J. 2016 May;45(4):365-76. doi: 10.1007/s00249-015-1106-x. Epub 2016 Feb 23.
Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology.
大多数膜攻击复合物-穿孔素/胆固醇依赖性溶细胞素(MACPF/CDC)蛋白被认为是通过在经历前孔到孔的转变之前组装成前孔寡聚体,从而在靶膜上形成孔。在孔形成过程中的组装包括亚基的完整环和不完整环(弧)。弧和完整环之间的平衡由一种依赖于蛋白质浓度的机制决定,其中弧孔是由于寡聚化过程中游离蛋白质亚基的消耗导致前孔形式的动力学捕获而产生的。在这里,我们描述了使用动力学测定法来研究肺炎链球菌的MACPF/CDC肺炎溶素在红细胞中形成孔的过程。我们表明,细胞裂解对蛋白质浓度表现出两种依赖性。在较低浓度下,它依赖于弧寡聚体的前孔到孔的转变,我们证明这是一个协同过程。在较高浓度下,它依赖于结合到膜上的肺炎溶素的量,并反映了该蛋白质对其受体胆固醇的亲和力。在细胞裂解开始之前会出现一个延迟;这取决于肺炎溶素的寡聚化。对肺炎溶素引起的细胞裂解进行动力学剖析表明,MACPF/CDC有能力产生大小可变的孔形成寡聚结构,这些结构在生物学中很可能具有不同的功能作用。