Suppr超能文献

用于芯片上原位浓缩和恒化培养微生物的自组装颗粒膜。

Self-assembled particle membranes for in situ concentration and chemostat-like cultivation of microorganisms on a chip.

机构信息

Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.

出版信息

Lab Chip. 2016 Mar 21;16(6):1072-80. doi: 10.1039/c6lc00116e. Epub 2016 Feb 24.

Abstract

Recently, microparticles have been used as nanoporous membranes in microfluidic devices, contributing to various bioassays on a chip. Here, we report a self-assembled particle membrane (SAPM) integrated microfluidic device that concentrates particles into an aimed microchamber array by using evaporation-driven capillary forces, and manipulates the chemical environment of the microchamber array by sequentially introducing different solutions. We demonstrate that the SAPM-integrated microchamber array can concentrate microparticles and microbial cells up to 120-fold for 2 h and 35-fold for 1 h, respectively, resulting in remarkably high concentration factors. Additionally, we demonstrate that the microchamber array has high potential as a chemostat-like bioreactor because it can actively manipulate the initial seeding number of bacterial cells and continuously supply and sequentially switch fresh nutrients to them. As an example of various applications, the chemostat-like bioreactor was used as a microbial biosensor platform that enabled microbial sensor cells to respond more efficiently and rapidly to external stimuli, such as heavy metal ions. This was made possible by almost eliminating the initial lag phase that dramatically shortened the whole assay time. Notably, the SAPM-integrated microchamber array not only facilitates various bioassays on a chip but also provides unprecedented experimental platforms to study microorganisms in a simple and convenient manner.

摘要

最近,微粒已被用作微流控装置中的纳米多孔膜,为芯片上的各种生物测定做出贡献。在这里,我们报告了一种自组装颗粒膜(SAPM)集成微流控装置,该装置利用蒸发驱动的毛细作用力将颗粒浓缩到目标微腔阵列中,并通过顺序引入不同的溶液来操纵微腔阵列的化学环境。我们证明,SAPM 集成的微腔阵列可以将微颗粒和微生物细胞分别浓缩 120 倍和 35 倍,达到 2 小时和 1 小时,从而产生显著的浓缩因子。此外,我们证明微腔阵列具有作为类似恒化器的生物反应器的巨大潜力,因为它可以主动操纵细菌细胞的初始接种数量,并连续为它们提供和顺序切换新鲜的营养物质。作为各种应用的一个例子,类似恒化器的生物反应器被用作微生物生物传感器平台,使微生物传感器细胞能够更有效地快速响应外部刺激,如重金属离子。这是通过几乎消除了大大缩短整个测定时间的初始滞后阶段来实现的。值得注意的是,SAPM 集成的微腔阵列不仅方便了芯片上的各种生物测定,而且还为以简单方便的方式研究微生物提供了前所未有的实验平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验