Moudjed Brahim, Botton Valéry, Henry Daniel, Millet Séverine, Ben Hadid Hamda
Univ Lyon, Ecole Centrale de Lyon, Université Lyon 1, INSA de Lyon, CNRS, Laboratoire de Mécanique des Fluides et d'Acoustique, ECL, 36 avenue Guy de Collongue, F-69134, ECULLY Cedex, France; CEA, Laboratoire d'Instrumentation et d'Expérimentation en Mécanique des Fluides et Thermohydraulique, DEN/DANS/DM2S/STMF/LIEFT, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France.
Univ Lyon, Ecole Centrale de Lyon, Université Lyon 1, INSA de Lyon, CNRS, Laboratoire de Mécanique des Fluides et d'Acoustique, ECL, 36 avenue Guy de Collongue, F-69134, ECULLY Cedex, France.
Ultrasonics. 2016 May;68:33-42. doi: 10.1016/j.ultras.2016.02.003. Epub 2016 Feb 8.
This paper presents an original experimental and numerical investigation of acoustic streaming driven by an acoustic beam reflecting on a wall. The water experiment features a 2 MHz acoustic beam totally reflecting on one of the tank glass walls. The velocity field in the plane containing the incident and reflected beam axes is investigated using Particle Image Velocimetry (PIV). It exhibits an original y-shaped structure: the impinging jet driven by the incident beam is continued by a wall jet, and a second jet is driven by the reflected beam, making an angle with the impinging jet. The flow is also numerically modeled as that of an incompressible fluid undergoing a volumetric acoustic force. This is a classical approach, but the complexity of the acoustic field in the reflection zone, however, makes it difficult to derive an exact force field in this area. Several approximations are thus tested; we show that the observed velocity field only weakly depends on the approximation used in this small region. The numerical model results are in good agreement with the experimental results. The spreading of the jets around their impingement points and the creeping of the wall jets along the walls are observed to allow the interaction of the flow with a large wall surface, which can even extend to the corners of the tank; this could be an interesting feature for applications requiring efficient heat and mass transfer at the wall. More fundamentally, the velocity field is shown to have both similarities and differences with the velocity field in a classical centered acoustic streaming jet. In particular its magnitude exhibits a fairly good agreement with a formerly derived scaling law based on the balance of the acoustic forcing with the inertia due to the flow acceleration along the beam axis.
本文介绍了一项关于声束在壁面上反射驱动的声流的原创性实验和数值研究。水实验的特点是2兆赫的声束在水箱玻璃壁之一上全反射。使用粒子图像测速技术(PIV)研究包含入射和反射声束轴的平面内的速度场。它呈现出一种独特的y形结构:由入射声束驱动的冲击射流由壁面射流延续,并且由反射声束驱动的第二个射流与冲击射流成一定角度。该流动也被数值模拟为不可压缩流体承受体积声学力的流动。这是一种经典方法,然而,反射区域中声场的复杂性使得难以在该区域推导出精确的力场。因此测试了几种近似方法;我们表明,在这个小区域中观察到的速度场仅微弱地依赖于所使用的近似方法。数值模型结果与实验结果吻合良好。观察到射流在其冲击点周围的扩散以及壁面射流沿壁面的蠕动,使得流动能够与大面积的壁面相互作用,甚至可以延伸到水箱的角落;对于需要在壁面进行高效传热和传质的应用来说,这可能是一个有趣的特征。更根本的是,速度场与经典的中心声流射流中的速度场既有相似之处也有不同之处。特别是其大小与先前基于声学力与沿声束轴流动加速引起的惯性之间的平衡推导的标度律表现出相当好的一致性。