Suppr超能文献

一种预测角质形成细胞癌风险的模型。

A Model to Predict the Risk of Keratinocyte Carcinomas.

作者信息

Whiteman David C, Thompson Bridie S, Thrift Aaron P, Hughes Maria-Celia, Muranushi Chiho, Neale Rachel E, Green Adele C, Olsen Catherine M

机构信息

Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

Population Health Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

出版信息

J Invest Dermatol. 2016 Jun;136(6):1247-1254. doi: 10.1016/j.jid.2016.02.008. Epub 2016 Feb 22.

Abstract

Basal cell and squamous cell carcinomas of the skin are the commonest cancers in humans, yet no validated tools exist to estimate future risks of developing keratinocyte carcinomas. To develop a prediction tool, we used baseline data from a prospective cohort study (n = 38,726) in Queensland, Australia, and used data linkage to capture all surgically excised keratinocyte carcinomas arising within the cohort. Predictive factors were identified through stepwise logistic regression models. In secondary analyses, we derived separate models within strata of prior skin cancer history, age, and sex. The primary model included terms for 10 items. Factors with the strongest effects were >20 prior skin cancers excised (odds ratio 8.57, 95% confidence interval [95% CI] 6.73-10.91), >50 skin lesions destroyed (odds ratio 3.37, 95% CI 2.85-3.99), age ≥ 70 years (odds ratio 3.47, 95% CI 2.53-4.77), and fair skin color (odds ratio 1.75, 95% CI 1.42-2.15). Discrimination in the validation dataset was high (area under the receiver operator characteristic curve 0.80, 95% CI 0.79-0.81) and the model appeared well calibrated. Among those reporting no prior history of skin cancer, a similar model with 10 factors predicted keratinocyte carcinoma events with reasonable discrimination (area under the receiver operator characteristic curve 0.72, 95% CI 0.70-0.75). Algorithms using self-reported patient data have high accuracy for predicting risks of keratinocyte carcinomas.

摘要

皮肤基底细胞癌和鳞状细胞癌是人类最常见的癌症,但目前尚无经过验证的工具来估计发生角质形成细胞癌的未来风险。为了开发一种预测工具,我们使用了澳大利亚昆士兰州一项前瞻性队列研究(n = 38,726)的基线数据,并通过数据链接获取该队列中所有手术切除的角质形成细胞癌病例。通过逐步逻辑回归模型确定预测因素。在二次分析中,我们在既往皮肤癌病史、年龄和性别的分层中分别建立模型。主要模型包含10项指标。影响最强的因素包括:既往切除过20例以上皮肤癌(比值比8.57,95%置信区间[95%CI]6.73 - 10.91)、破坏过50个以上皮肤病变(比值比3.37,95%CI 2.85 - 3.99)、年龄≥70岁(比值比3.47,95%CI 2.53 - 4.77)以及肤色白皙(比值比1.75,95%CI 1.42 - 2.15)。验证数据集中的辨别力较高(受试者操作特征曲线下面积为0.80,95%CI 0.79 - 0.81),且模型校准良好。在那些报告无皮肤癌既往史的人群中,一个包含10个因素的类似模型在预测角质形成细胞癌事件方面具有合理的辨别力(受试者操作特征曲线下面积为0.72,95%CI 0.70 - 0.75)。使用患者自我报告数据的算法在预测角质形成细胞癌风险方面具有较高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验