Antonakakis Marios, Dimitriadis Stavros I, Zervakis Michalis, Micheloyannis Sifis, Rezaie Roozbeh, Babajani-Feremi Abbas, Zouridakis George, Papanicolaou Andrew C
Digital Image and Signal Processing Laboratory, School of Electronic and Computer Engineering, Technical University of Crete, Chania 73100, Greece.
Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom; Cardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom; Artificial Intelligence and Information Analysis Laboratory, Department of Informatics, Aristotle University, Thessaloniki 54124, Greece; Neuroinformatics Group, Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece. Electronic address: http://www.neuroinformatics.gr.
Int J Psychophysiol. 2016 Apr;102:1-11. doi: 10.1016/j.ijpsycho.2016.02.002. Epub 2016 Feb 22.
Cross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands. After forming the CFC-based functional connectivity graphs, we employed a tensor representation and tensor subspace analysis to identify the optimal set of features for subject classification as mTBI or control. Our results showed that controls formed a dense network of stronger local and global connections indicating higher functional integration compared to mTBI patients. Furthermore, mTBI patients could be separated from controls with more than 90% classification accuracy. These findings indicate that analysis of brain networks computed from resting-state MEG with PAC and tensorial representation of connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI.
交叉频率耦合(CFC)被认为是跨远距离脑区的神经网络功能整合的一种基本机制。在本研究中,我们分析了从30名轻度创伤性脑损伤(mTBI)患者和50名对照者的静息态脑磁图(MEG)记录中获得的CFC特征。我们使用互信息(MI)来量化六个非重叠频段中记录传感器之间活动的相位到幅度耦合(PAC)。在形成基于CFC的功能连接图后,我们采用张量表示和张量子空间分析来确定将受试者分类为mTBI或对照的最佳特征集。我们的结果表明,与mTBI患者相比,对照者形成了一个更强的局部和全局连接的密集网络,表明功能整合更高。此外,mTBI患者可以与对照者区分开来,分类准确率超过90%。这些发现表明,利用PAC和连接特征的张量表示对静息态MEG计算的脑网络进行分析,可能为mTBI的诊断提供有价值的生物标志物。