Suppr超能文献

MDI-GPU:利用通用并行图形处理单元(GP-GPU)计算加速基因组规模数据的整合建模

MDI-GPU: accelerating integrative modelling for genomic-scale data using GP-GPU computing.

作者信息

Mason Samuel A, Sayyid Faiz, Kirk Paul D W, Starr Colin, Wild David L

出版信息

Stat Appl Genet Mol Biol. 2016 Mar;15(1):83-6. doi: 10.1515/sagmb-2015-0055.

Abstract

The integration of multi-dimensional datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct--but often complementary--information. However, the large amount of data adds burden to any inference task. Flexible Bayesian methods may reduce the necessity for strong modelling assumptions, but can also increase the computational burden. We present an improved implementation of a Bayesian correlated clustering algorithm, that permits integrated clustering to be routinely performed across multiple datasets, each with tens of thousands of items. By exploiting GPU based computation, we are able to improve runtime performance of the algorithm by almost four orders of magnitude. This permits analysis across genomic-scale data sets, greatly expanding the range of applications over those originally possible. MDI is available here: http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/.

摘要

多维度数据集的整合仍然是系统生物学和基因组医学中的一个关键挑战。现代高通量技术产生了各种各样不同的数据类型,提供了独特但往往互补的信息。然而,大量的数据给任何推理任务都增加了负担。灵活的贝叶斯方法可能会减少对强建模假设的必要性,但也会增加计算负担。我们提出了一种贝叶斯相关聚类算法的改进实现,该算法允许在多个数据集中常规地进行集成聚类,每个数据集都有成千上万的项目。通过利用基于GPU的计算,我们能够将算法的运行时性能提高近四个数量级。这允许对基因组规模的数据集进行分析,大大扩展了原本可能的应用范围。MDI可在此处获取:http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验